首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NO production catalysed by eNOS (endothelial nitric-oxide synthase) plays an important role in the cardiovascular system. A variety of agonists activate eNOS through the Ser1177 phosphorylation concomitant with Thr495 dephosphorylation, resulting in increased ·NO production with a basal level of calcium. To date, the underlying mechanism remains unclear. We have previously demonstrated that perturbation of the AIE (autoinhibitory element) in the FMN-binding subdomain can also lead to eNOS activation with a basal level of calcium, implying that the AIE might regulate eNOS activation through modulating phosphorylation at Thr495 and Ser1177. Here we generated stable clones in HEK-293 (human embryonic kidney 293) cells with a series of deletion mutants in both the AIE (Δ594–604, Δ605–612 and Δ626–634) and the C-terminal tail (Δ14; deletion of 1164–1177). The expression of Δ594–604 and Δ605–612 mutants in non-stimulated HEK-293 cells substantially increased nitrate/nitrite release into the culture medium; the other two mutants, Δ626–634 and Δ1164–1177, displayed no significant difference when compared with WTeNOS (wild-type eNOS). Intriguingly, mutant Δ594–604 showed close correlation between Ser1177 phosphorylation and Thr495 dephosphorylation, and NO production. Our results have indicated that N-terminal portion of AIE (residues 594–604) regulates eNOS activity through coordinated phosphorylation on Ser1177 and Thr495.  相似文献   

2.
Part of the “signature sequence” that defines the voltage-gated proton channel (HV1) is a tryptophan residue adjacent to the second Arg in the S4 transmembrane helix: RxWRxxR, which is perfectly conserved in all high confidence HV1 genes. Replacing Trp207 in human HV1 (hHV1) with Ala, Ser, or Phe facilitated gating, accelerating channel opening by 100-fold, and closing by 30-fold. Mutant channels opened at more negative voltages than wild-type (WT) channels, indicating that in WT channels, Trp favors a closed state. The Arrhenius activation energy, Ea, for channel opening decreased to 22 kcal/mol from 30–38 kcal/mol for WT, confirming that Trp207 establishes the major energy barrier between closed and open hHV1. Cation–π interaction between Trp207 and Arg211 evidently latches the channel closed. Trp207 mutants lost proton selectivity at pHo >8.0. Finally, gating that depends on the transmembrane pH gradient (ΔpH-dependent gating), a universal feature of HV1 that is essential to its biological functions, was compromised. In the WT hHV1, ΔpH-dependent gating is shown to saturate above pHi or pHo 8, consistent with a single pH sensor with alternating access to internal and external solutions. However, saturation occurred independently of ΔpH, indicating the existence of distinct internal and external pH sensors. In Trp207 mutants, ΔpH-dependent gating saturated at lower pHo but not at lower pHi. That Trp207 mutation selectively alters pHo sensing further supports the existence of distinct internal and external pH sensors. Analogous mutations in HV1 from the unicellular species Karlodinium veneficum and Emiliania huxleyi produced generally similar consequences. Saturation of ΔpH-dependent gating occurred at the same pHo and pHi in HV1 of all three species, suggesting that the same or similar group(s) is involved in pH sensing. Therefore, Trp enables four characteristic properties: slow channel opening, highly temperature-dependent gating kinetics, proton selectivity, and ΔpH-dependent gating.  相似文献   

3.
4.
The effects of 3′ single-strand dangling-ends of different lengths, sequence identity of hairpin loop, and hairpin loop biotinylation at different loop residues on DNA hairpin thermodynamic stability were investigated. Hairpins contained 16 bp stem regions and five base loops formed from the sequence, 5′-TAGTCGACGTGGTCC-N5-GGACCACGTCGACTAG-En-3′. The length of the 3′ dangling-ends (En) was n = 13 or 22 bases. The identities of loop bases at positions 2 and 4 were varied. Biotinylation was varied at loop base positions 2, 3 or 4. Melting buffers contained 25 or 115 mM Na+. Average tm values for all molecules were 73.5 and 84.0°C in 25 and 115 mM Na+, respectively. Average two-state parameters evaluated from van’t Hoff analysis of the melting curve shapes in 25 mM Na+ were ΔHvH = 84.8 ± 15.5 kcal/mol, ΔSvH = 244.8 ± 45.0 cal/K·mol and ΔGvH = 11.9 ± 2.1 kcal/mol. In 115 mM Na+, two-state parameters were not very different at ΔHvH = 80.42 ± 12.74 kcal/mol, ΔSvH = 225.24 ± 35.88 cal/K·mol and ΔGvH = 13.3 ± 2.0 kcal/mol. Differential scanning calorimetry (DSC) was performed to test the validity of the two-state assumption and evaluated van’t Hoff parameters. Thermodynamic parameters from DSC measurements (within experimental error) agreed with van’t Hoff parameters, consistent with a two-state process. Overall, dangling-end DNA hairpin stabilities are not affected by dangling-end length, loop biotinylation or sequence and vary uniformly with [Na+]. Consider able freedom is afforded when designing DNA hairpins as probes in nucleic acid based detection assays, such as microarrays.  相似文献   

5.
The effect of temperature on the conformation of a histone (H3.1) is studied by a coarse-grained Monte Carlo simulation based on three knowledge-based contact potentials (MJ, BT, BFKV). Despite unique energy and mobility profiles of its residues, the histone H3.1 undergoes a systematic (possibly continuous) structural transition from a random coil to a globular conformation on reducing the temperature. The range over which such a systematic response in variation of the radius of gyration (Rg) with the temperature (T) occurs, however, depends on the potential, i.e. ΔTMJ ≈ 0.013–0.020, ΔTBT ≈ 0.018–0.026, and ΔTBFKV ≈ 0.006–0.013 (in reduced unit). Unlike MJ and BT potentials, results from the BFKV potential show an anomaly where the magnitude of Rg decreases on raising the temperature in a range ΔTA ≈ 0.015–0.018 before reaching its steady-state random coil configuration. Scaling of the structure factor, S(q) ∝ q−1/ν, with the wave vector, q = 2π/λ, and the wavelength, λ, reveals a systematic change in the effective dimension (De∼1/ν) of the histone with all potentials (MJ, BT, BFKV): De∼3 in the globular structure with De∼2 for the random coil. Reproducibility of the general yet unique (monotonic) structural transition of the protein H3.1 with the temperature (in contrast to non-monotonic structural response of a similar but different protein H2AX) with three interaction sets shows that the knowledge-based contact potential is viable tool to investigate structural response of proteins. Caution should be exercise with the quantitative comparisons due to differences in transition regimes with these interactions.  相似文献   

6.
Myocardial tissue characterization using T2 * relaxation mapping techniques is an emerging application of (pre)clinical cardiovascular magnetic resonance imaging. The increase in microscopic susceptibility at higher magnetic field strengths renders myocardial T2 * mapping at ultrahigh magnetic fields conceptually appealing. This work demonstrates the feasibility of myocardial T2 * imaging at 7.0 T and examines the applicability of temporally-resolved and high spatial resolution myocardial T2 * mapping. In phantom experiments single cardiac phase and dynamic (CINE) gradient echo imaging techniques provided similar T2 * maps. In vivo studies showed that the peak-to-peak B0 difference following volume selective shimming was reduced to approximately 80 Hz for the four chamber view and mid-ventricular short axis view of the heart and to 65 Hz for the left ventricle. No severe susceptibility artifacts were detected in the septum and in the lateral wall for T2 * weighting ranging from TE = 2.04 ms to TE = 10.2 ms. For TE >7 ms, a susceptibility weighting induced signal void was observed within the anterior and inferior myocardial segments. The longest T2 * values were found for anterior (T2 * = 14.0 ms), anteroseptal (T2 * = 17.2 ms) and inferoseptal (T2 * = 16.5 ms) myocardial segments. Shorter T2 * values were observed for inferior (T2 * = 10.6 ms) and inferolateral (T2 * = 11.4 ms) segments. A significant difference (p = 0.002) in T2 * values was observed between end-diastole and end-systole with T2 * changes of up to approximately 27% over the cardiac cycle which were pronounced in the septum. To conclude, these results underscore the challenges of myocardial T2 * mapping at 7.0 T but demonstrate that these issues can be offset by using tailored shimming techniques and dedicated acquisition schemes.  相似文献   

7.
Resistance to thyroid hormone (RTH), a human syndrome, is characterized by high thyroid hormone (TH) and thyroid-stimulating hormone (TSH) levels. Mice with mutations in the thyroid hormone receptor beta (TRβ) gene that cannot bind steroid receptor coactivator 1 (SRC-1) and Src-1−/− mice both have phenotypes similar to that of RTH. Conversely, mice expressing a mutant nuclear corepressor 1 (Ncor1) allele that cannot interact with TRβ, termed NCoRΔID, have low TH levels and normal TSH. We hypothesized that Src-1−/− mice have RTH due to unopposed corepressor action. To test this, we crossed NCoRΔID and Src-1−/− mice to create mice deficient for coregulator action in all cell types. Remarkably, NCoRΔID/ΔID Src-1−/− mice have normal TH and TSH levels and are triiodothryonine (T3) sensitive at the level of the pituitary. Although absence of SRC-1 prevented T3 activation of key hepatic gene targets, NCoRΔID/ΔID Src-1−/− mice reacquired hepatic T3 sensitivity. Using in vivo chromatin immunoprecipitation assays (ChIP) for the related coactivator SRC-2, we found enhanced SRC-2 recruitment to TR-binding regions of genes in NCoRΔID/ΔID Src-1−/− mice, suggesting that SRC-2 is responsible for T3 sensitivity in the absence of NCoR1 and SRC-1. Thus, T3 targets require a critical balance between NCoR1 and SRC-1. Furthermore, replacement of NCoR1 with NCoRΔID corrects RTH in Src-1−/− mice through increased SRC-2 recruitment to T3 target genes.  相似文献   

8.
Two DCM mutants (E40K and E54K) of tropomyosin (Tm) were examined using the thin-filament extraction/reconstitu­tion technique. The effects of the Ca2+, ATP, phos­phate (Pi), and ADP concentrations on isometric tension and its transients were studied at 25°C, and the results were com­pared to those for the WT protein. Our results indicate that both E40K and E54K have a significantly lower T HC (high Ca2+ ten­sion at pCa 4.66) (E40K: 1.21±0.06 T a, ±SEM, N = 34; E54K: 1.24±0.07 T a, N = 28), a significantly lower T LC (low- Ca2+ tension at pCa 7.0) (E40K: 0.07±0.02 T a, N = 34; E54K: 0.06±0.02 T a, N = 28), and a significantly lower T act (Ca2+ activatable tension) (T act = T HC–TLC, E40K: 1.15±0.08 T a, N = 34; E54K: 1.18±0.06 T a, N = 28) than WT (T HC = 1.53±0.07 T a, T LC = 0.12±0.01 T a, T act = 1.40±0.07 T a, N = 25). All tensions were normalized to T a ( = 13.9±0.8 kPa, N = 57), the ten­sion of actin-filament reconstituted cardiac fibers (myocardium) under the standard activating conditions. The Ca2+ sensitivity (pCa50) of E40K (5.23±0.02, N = 34) and E54K (5.24±0.03, N = 28) was similar to that of the WT protein (5.26±0.03, N = 25). The cooper­a­tivity increased significantly in E54K (3.73±0.25, N = 28) compared to WT (2.80±0.17, N = 25). Seven kinetic constants were deduced using sinusoidal analysis at pCa 4.66. These results enabled us to calculate the cross-bridge distribution in the strongly attached states, and thereby deduce the force/cross-bridge. The results indicate that the force/cross-bridge is ∼15% less in E54K than WT, but remains similar to that of the WT protein in the case of E40K. We conclude that over-inhibition of the actomyosin interaction by E40K and E54K Tm mutants leads to a decreased force-generating ability at systole, which is the main mechanism underlying the early pathogenesis of DCM.  相似文献   

9.
A number of thrombin mutants have been constructed to investigate the role of Trp96 and the β-insertion loop for the specificity of thrombin. Thrombin(60D) consists of the replacement of the β-insertion loop (14 amino acid residues from 59 to 63, including a 9-residue insertion at position 60) with the corresponding four residues in trypsin, Tyr-Lys-Ser-Gly; thrombin(GGG) is a smaller loop mutation in which the residues Tyr60APro60BPro60CTrp60D Asp60ELys60F of the β-insertion loop were replaced by Gly-Gly-Gly; thrombin(96S) consists of a point mutation Trp96→Ser; and thrombin(GGG/96S) is the double mutant incorporating both changes. Thrombin(96S) clots fibrinogen ~3 times more slowly than thrombin, with the two β-insertion loop mutants, thrombin(GGG) and thrombin(GGG/96S), reacting ~3000- and 1300-fold more slowly, respectively. The specificity constant k cat/K m for the cleavage of fibrinopeptide A and fibrinopeptide B by thrombin(96S) was 2.6 and 0.35 μM?1 s?1 respectively, compared to 10 and 2.5 μM?1 s?1 for wild-type recombinant thrombin, respectively. Kinetic constants were determined for the hydrolysis of H-D-phenylalanyl-L-pipecolyl-L-arginine-p-nitroaniline. The Michaelis constant K m increased ~6-fold for thrombin(96S) and >200-fold for thrombin(GGG) and thrombin(GGG/96S) when compared to wild-type recombinant thrombin, while the catalytic constant k cat remained approximately the same. All mutants were more susceptible to inhibition by BPTI than wild-type recombinant thrombin. Clearly, the β-insertion loop is important for thrombin activity. But the mutation of Trp96→Ser can compensate somewhat for the loss of binding at the β-insertion loop. The deletion of the hydrophobic interaction between Trp96 and Pro60BPro60C appears to decrease the stability of the β-insertion loop, thereby causing a decrease in binding efficiency.  相似文献   

10.
GABA (γ-amino butyric acid) is an inhibitory neurotransmitter in the adult brain that can mediate depolarizing responses during development or after neuropathological insults. Under which conditions GABAergic membrane depolarizations are sufficient to impose excitatory effects is hard to predict, as shunting inhibition and GABAergic effects on spatiotemporal filtering of excitatory inputs must be considered. To evaluate at which reversal potential a net excitatory effect was imposed by GABA (EGABAThr), we performed a detailed in-silico study using simple neuronal topologies and distinct spatiotemporal relations between GABAergic and glutamatergic inputs.These simulations revealed for GABAergic synapses located at the soma an EGABAThr close to action potential threshold (EAPThr), while with increasing dendritic distance EGABAThr shifted to positive values. The impact of GABA on AMPA-mediated inputs revealed a complex temporal and spatial dependency. EGABAThr depends on the temporal relation between GABA and AMPA inputs, with a striking negative shift in EGABAThr for AMPA inputs appearing after the GABA input. The spatial dependency between GABA and AMPA inputs revealed a complex profile, with EGABAThr being shifted to values negative to EAPThr for AMPA synapses located proximally to the GABA input, while for distally located AMPA synapses the dendritic distance had only a minor effect on EGABAThr. For tonic GABAergic conductances EGABAThr was negative to EAPThr over a wide range of gGABAtonic values. In summary, these results demonstrate that for several physiologically relevant situations EGABAThr is negative to EAPThr, suggesting that depolarizing GABAergic responses can mediate excitatory effects even if EGABA did not reach EAPThr.  相似文献   

11.
12.
Pyridoxal kinase (PLK; EC 2.7.1.35) is a key enzyme for vitamin B6 metabolism in animals. It catalyzes the ATP-dependent phosphorylation of pyridoxal, generating pyridoxal 5′-phosphate, an important cofactor for many enzymatic reactions. Bombyx mori PLK (BmPLK) is 10 or more residues shorter than mammalian PLKs, and some amino acid residues conserved in the PLKs from mammals are not maintained in the protein. Multiple sequence alignment suggested that amino acid residues Thr47, Ile54, Arg88, Asn121 and Glu230 might play important roles in BmPLK. In this study, we used a site-directed specific mutagenesis approach to determine the functional significance of these particular amino acid residues in BmPLK. Our results demonstrated that the mutation of Asn121 to Glu did not affect the catalytic function of BmPLK. The corresponding site-directed mutants of Thr47 to Asn, Ile54 to Phe, and Arg88 to Ile displayed a decreased catalytic efficiency and an elevated Km value for substrate relative to the wild-type value, and no enzyme activity could be detected in mutant of Trp230 to Glu. Circular dichroism analysis revealed that the mutation of Trp230 to Glu resulted in mis-folding of the protein. Our results provided direct evidence that residue Trp230 is crucial to maintain the structural and functional integrity of BmPLK. This study will add to the existing understanding of the characteristic of structure and function of BmPLK.  相似文献   

13.
14.
Two non-pigmented, motile, Gram-negative marine bacteria designated R9SW1T and A3d10T were isolated from sea water samples collected from Chazhma Bay, Gulf of Peter the Great, Sea of Japan, Pacific Ocean, Russia and St. Kilda Beach, Port Phillip Bay, the Tasman Sea, Pacific Ocean, respectively. Both organisms were found to grow between 4°C and 40°C, between pH 6 to 9, and are moderately halophilic, tolerating up to 20% (w/v) NaCl. Both strains were found to be able to degrade Tween 40 and 80, but only strain R9SW1T was found to be able to degrade starch. The major fatty acids were characteristic for the genus Marinobacter including C16:0, C16:1 ω7c, C18:1 ω9c and C18:1 ω7c. The G+C content of the DNA for strains R9SW1T and A3d10T were determined to be 57.1 mol% and 57.6 mol%, respectively. The two new strains share 97.6% of their 16S rRNA gene sequences, with 82.3% similarity in the average nucleotide identity (ANI), 19.8% similarity in the in silico genome-to-genome distance (GGD), 68.1% similarity in the average amino acid identity (AAI) of all conserved protein-coding genes, and 31 of the Karlin''s genomic signature dissimilarity. A phylogenetic analysis showed that R9SW1T clusters with M. algicola DG893T sharing 99.40%, and A3d10T clusters with M. sediminum R65T sharing 99.53% of 16S rRNA gene sequence similarities. The results of the genomic and polyphasic taxonomic study, including genomic, genetic, phenotypic, chemotaxonomic and phylogenetic analyses based on the 16S rRNA, gyrB and rpoD gene sequence similarities, the analysis of the protein profiles generated using MALDI-TOF mass spectrometry, and DNA-DNA relatedness data, indicated that strains R9SW1T and A3d10T represent two novel species of the genus Marinobacter. The names Marinobacter salarius sp. nov., with the type strain R9SW1T ( =  LMG 27497T  =  JCM 19399T  =  CIP 110588T  =  KMM 7502T) and Marinobacter similis sp. nov., with the type strain A3d10T ( =  JCM 19398T  =  CIP 110589T  =  KMM 7501T), are proposed.  相似文献   

15.
In skeletal muscle, intermolecular communication between the 1,4-dihydropyridine receptor (DHPR) and RYR1 is bidirectional: orthograde coupling (skeletal excitation–contraction coupling) is observed as depolarization-induced Ca2+ release via RYR1, and retrograde coupling is manifested by increased L-type Ca2+ current via DHPR. A critical domain (residues 720–765) of the DHPR α1S II–III loop plays an important but poorly understood role in bidirectional coupling with RYR1. In this study, we examine the consequences of fluorescent protein insertion into different positions within the α1S II–III loop. In four constructs, a cyan fluorescent protein (CFP)–yellow fluorescent protein (YFP) tandem was introduced in place of residues 672–685 (the peptide A region). All four constructs supported efficient bidirectional coupling as determined by the measurement of L-type current and myoplasmic Ca2+ transients. In contrast, insertion of a CFP–YFP tandem within the N-terminal portion of the critical domain (between residues 726 and 727) abolished bidirectional signaling. Bidirectional coupling was partially preserved when only a single YFP was inserted between residues 726 and 727. However, insertion of YFP near the C-terminal boundary of the critical domain (between residues 760 and 761) or in the conserved C-terminal portion of the α1S II–III loop (between residues 785 and 786) eliminated bidirectional coupling. None of the fluorescent protein insertions, even those that interfered with signaling, significantly altered membrane expression or targeting. Thus, bidirectional signaling is ablated by insertions at two different sites in the C-terminal portion of the α1S II–III loop. Significantly, our results indicate that the conserved portion of the α1S II–III loop C terminal to the critical domain plays an important role in bidirectional coupling either by conveying conformational changes to the critical domain from other regions of the DHPR or by serving as a site of interaction with other junctional proteins such as RYR1.  相似文献   

16.

Background

Vibration response imaging (VRI) is a bedside technology to monitor ventilation by detecting lung sound vibrations. It is currently unknown whether VRI is able to accurately monitor the local distribution of ventilation within the lungs. We therefore compared VRI to electrical impedance tomography (EIT), an established technique used for the assessment of regional ventilation.

Methodology/Principal Findings

Simultaneous EIT and VRI measurements were performed in the healthy and injured lungs (ALI; induced by saline lavage) at different PEEP levels (0, 5, 10, 15 mbar) in nine piglets. Vibration energy amplitude (VEA) by VRI, and amplitudes of relative impedance changes (rel.ΔZ) by EIT, were evaluated in seven regions of interest (ROIs). To assess the distribution of tidal volume (VT) by VRI and EIT, absolute values were normalized to the VT obtained by simultaneous spirometry measurements. Redistribution of ventilation by ALI and PEEP was detected by VRI and EIT. The linear correlation between pooled VT by VEA and rel.ΔZ was R2 = 0.96. Bland-Altman analysis showed a bias of −1.07±24.71 ml and limits of agreement of −49.05 to +47.36 ml. Within the different ROIs, correlations of VT-distribution by EIT and VRI ranged between R2 values of 0.29 and 0.96. ALI and PEEP did not alter the agreement of VT between VRI and EIT.

Conclusions/Significance

Measurements of regional ventilation distribution by VRI are comparable to those obtained by EIT.  相似文献   

17.
Apelin is the endogenous ligand of the orphan seven-transmembrane domain (TM) G protein-coupled receptor APJ. Apelin is involved in the regulation of body fluid homeostasis and cardiovascular functions. We previously showed the importance of the C-terminal Phe of apelin 17 (K17F) in the hypotensive activity of this peptide. Here, we show either by deleting the Phe residue (K16P) or by substituting it by an Ala (K17A), that it plays a crucial role in apelin receptor internalization but not in apelin binding or in Gαi-protein coupling. Then we built a homology three-dimensional model of the human apelin receptor using the cholecystokinin receptor-1 model as a template, and we subsequently docked K17F into the binding site. We visualized a hydrophobic cavity at the bottom of the binding pocket in which the C-terminal Phe of K17F was embedded by Trp152 in TMIV and Trp259 and Phe255 in TMVI. Using molecular modeling and site-directed mutagenesis studies, we further showed that Phe255 and Trp259 are key residues in triggering receptor internalization without playing a role in apelin binding or in Gαi-protein coupling. These findings bring new insights into apelin receptor activation and show that Phe255 and Trp259, by interacting with the C-terminal Phe of the pyroglutamyl form of apelin 13 (pE13F) or K17F, are crucial for apelin receptor internalization.  相似文献   

18.
19.
The β1a subunit is a cytoplasmic component of the dihydropyridine receptor (DHPR) complex that plays an essential role in skeletal muscle excitation-contraction (EC) coupling. Here we investigate the role of the C-terminal end of this auxiliary subunit in the functional and structural communication between the DHPR and the Ca2+ release channel (RyR1). Progressive truncation of the β1a C terminus showed that deletion of amino acid residues Gln489 to Trp503 resulted in a loss of depolarization-induced Ca2+ release, a severe reduction of L-type Ca2+ currents, and a lack of tetrad formation as evaluated by freeze-fracture analysis. However, deletion of this domain did not affect expression/targeting or density (Qmax) of the DHPR-α1S subunit to the plasma membrane. Within this motif, triple alanine substitution of residues Leu496, Leu500, and Trp503, which are thought to mediate direct β1a-RyR1 interactions, weakened EC coupling but did not replicate the truncated phenotype. Therefore, these data demonstrate that an amino acid segment encompassing sequence 489QVQVLTSLRRNLSFW503 of β1a contains critical determinant(s) for the physical link of DHPR and RyR1, further confirming a direct correspondence between DHPR positioning and DHPR/RyR functional interactions. In addition, our data strongly suggest that the motif Leu496-Leu500-Trp503 within the β1a C-terminal tail plays a nonessential role in the bidirectional DHPR/RyR1 signaling that supports skeletal-type EC coupling.  相似文献   

20.
A number of thrombin mutants have been constructed to investigate the role of Trp96 and the -insertion loop for the specificity of thrombin. Thrombin(60D) consists of the replacement of the -insertion loop (14 amino acid residues from 59 to 63, including a 9-residue insertion at position 60) with the corresponding four residues in trypsin, Tyr-Lys-Ser-Gly; thrombin(GGG) is a smaller loop mutation in which the residues Tyr60APro60BPro60CTrp60D Asp60ELys60F of the -insertion loop were replaced by Gly-Gly-Gly; thrombin(96S) consists of a point mutation Trp96Ser; and thrombin(GGG/96S) is the double mutant incorporating both changes. Thrombin(96S) clots fibrinogen ~3 times more slowly than thrombin, with the two -insertion loop mutants, thrombin(GGG) and thrombin(GGG/96S), reacting ~3000- and 1300-fold more slowly, respectively. The specificity constant k cat/K m for the cleavage of fibrinopeptide A and fibrinopeptide B by thrombin(96S) was 2.6 and 0.35 M–1 s–1 respectively, compared to 10 and 2.5 M–1 s–1 for wild-type recombinant thrombin, respectively. Kinetic constants were determined for the hydrolysis of H-D-phenylalanyl-L-pipecolyl-L-arginine-p-nitroaniline. The Michaelis constant K m increased ~6-fold for thrombin(96S) and >200-fold for thrombin(GGG) and thrombin(GGG/96S) when compared to wild-type recombinant thrombin, while the catalytic constant k cat remained approximately the same. All mutants were more susceptible to inhibition by BPTI than wild-type recombinant thrombin. Clearly, the -insertion loop is important for thrombin activity. But the mutation of Trp96Ser can compensate somewhat for the loss of binding at the -insertion loop. The deletion of the hydrophobic interaction between Trp96 and Pro60BPro60C appears to decrease the stability of the -insertion loop, thereby causing a decrease in binding efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号