首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to tightly control transgene expression in vivo provides an opportunity to determine the role of certain gene products at different times during development and/or in response to different stimuli. We have characterized and evaluated a tetracycline-responsive endothelial-specific binary system during mouse development, by engineering several transgenic lines which drive the expression of a tetracycline- controlled transactivator (tTA) under the control of either the Tek or Tie promoters (driver lines). We have also generated a responder line which carries multiple copies of the tTA DNA binding element (tetos) upstream of a reporter gene coding for a nuclear targeted -galactosidase (responder lines). No expression of the target transgene was detected in mice homozygous for the reporter transgene. On mating the driver lines with the responder line, expression of -galactosidase from the reporter transgene was detected within the endothelium. Responder transgene expression was repressed rapidly upon addition of doxycycline to the drinking water. Importantly, this repression was reversible upon withdrawal of the drug. This approach should be useful to deliver the expression of potentially toxic gene products or rescue embryonic mutations that affect either the endothelial lineage or production of growth factors which are secreted systemically.  相似文献   

2.
3.
Conditional expression strains serve as a valuable tool to study the essentiality and to establish the vulnerability of a target under investigation in a drug discovery program. While essentiality implies an absolute requirement of a target function, vulnerability provides valuable information on the extent to which a target function needs to be depleted to achieve bacterial growth inhibition followed by cell death. The critical feature of an ideal conditional expression system is its ability to tightly regulate gene expression to achieve the full spectrum spanning from a high level of expression in order to support growth and near zero level of expression to mimic conditions of gene knockout. A number of bacterial conditional expression systems have been reported for use in mycobacteria. The utility of an isopropylthiogalactoside (IPTG) inducible system in mycobacteria has been reported for protein overexpression and anti-sense gene expression from a replicating multi-copy plasmid. Herein, we report the development of a versatile set of non-replicating IPTG inducible vectors for mycobacteria which can be used for generation of conditional expression strains through homologous recombination. The role of a single lac operator versus a double lac operator to regulate gene expression was evaluated by monitoring the expression levels of β-galactosidase in Mycobacterium smegmatis. These studies indicated a significant level of leaky expression from the vector with a single lac operator but none from the vector with double lac operator. The significance of the double lac operator vector for target validation was established by monitoring the growth kinetics of an inhA, a rpoB and a ftsZ conditional expression strain grown in the presence of different concentrations of IPTG. The utility of this inducible system in identifying target specific inhibitors was established by screening a focussed library of small molecules using an inhA and a rpoB conditional expression strain.  相似文献   

4.
Anatomical path tracing is of pivotal importance to decipher the relationship between brain and behavior. Unraveling the formation of neural circuits during embryonic maturation of the brain however is technically challenging because most transsynaptic tracing methods developed to date depend on stereotaxic tracer injection. To overcome this problem, we developed a binary genetic strategy for conditional genetic transsynaptic tracing in the mouse brain. Towards this end we generated two complementary knock-in mouse strains to selectively express the bidirectional transsynaptic tracer barley lectin (BL) and the retrograde transsynaptic tracer Tetanus Toxin fragment C from the ROSA26 locus after Cre-mediated recombination. Cell-specific tracer production in these mice is genetically encoded and does not depend on mechanical tracer injection. Therefore our experimental approach is suitable to study neural circuit formation in the embryonic murine brain. Furthermore, because tracer transfer across synapses depends on synaptic activity, these mouse strains can be used to analyze the communication between genetically defined neuronal populations during brain development at a single cell resolution. Here we provide a detailed protocol for transsynaptic tracing in mouse embryos using the novel recombinant ROSA26 alleles. We have utilized this experimental technique in order to delineate the neural circuitry underlying maturation of the reproductive axis in the developing female mouse brain.  相似文献   

5.
The genetic code is the syntactic foundation underlying the structure and function of every protein in the history of the biological world. Its highly ordered degenerate complexity suggests an incremental evolution, the result of a combination of selective, mechanistic, and random processes. These evolutionary processes are still poorly understood and remain an open question in the study of early life on Earth. We perform a compositional analysis of ribosomal proteins and ATPase subunits in bacterial and archaeal lineages, using conserved positions that came and remained under purifying selection before and up to the most recent common ancestor. An observable shift in amino acid usage at these conserved positions likely provides an untapped window into the history of protein sequence space, allowing events of genetic code expansion to be identified. We identify Cys, Glu, Phe, Ile, Lys, Val, Trp, and Tyr as recent additions to the genetic code, with Asn, Gln, Gly, and Leu among the more ancient. Our observations are consistent with a scenario in which genetic code expansion primarily favored amino acids that promoted an increase in polypeptide size and functionality. We propose that this expansion would have been critical in the takeover of many RNA-mediated processes, as well as the addition of novel biological functions inaccessible to an RNA-based physiology, such as crossing lipid membranes. Thus, expansion of the genetic code likely set the stage for the transition from RNA-based to protein-based life. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
条件性RNA干扰的原理和方法   总被引:1,自引:0,他引:1  
RNA干扰(RNAinterference,RNAi)是通过抑制转录后水平的基因表达而诱导功能缺失表型的有力工具。由于传统RNAi方法不能对小干扰RNA(smallinterferingRNA,siRNA)或短发夹状RNA(shorthairpinRNA,shRNA)的表达进行调控,在对细胞生存、细胞周期调控和细胞发育起重要作用的基因进行功能分析时受到一定限制。利用药物诱导系统对启动子进行修饰、利用Cre-LoxP系统对启动子或shRNA进行修饰而构建的条件性RNAi系统中,shRNA可根据研究者的需要在特定的时间和空间表达,克服了传统RNAi方法的局限,显著拓展了RNAi技术在功能基因组学和基因治疗等方面的应用范围。  相似文献   

8.
9.
Histiocytic sarcoma is a rare, aggressive neoplasm that responds poorly to therapy. Histiocytic sarcoma is thought to arise from macrophage precursor cells via genetic changes that are largely undefined. To improve our understanding of the etiology of histiocytic sarcoma we conducted a forward genetic screen in mice using the Sleeping Beauty transposon as a mutagen to identify genetic drivers of histiocytic sarcoma. Sleeping Beauty mutagenesis was targeted to myeloid lineage cells using the Lysozyme2 promoter. Mice with activated Sleeping Beauty mutagenesis had significantly shortened lifespan and the majority of these mice developed tumors resembling human histiocytic sarcoma. Analysis of transposon insertions identified 27 common insertion sites containing 28 candidate cancer genes. Several of these genes are known drivers of hematological neoplasms, like Raf1, Fli1, and Mitf, while others are well-known cancer genes, including Nf1, Myc, Jak2, and Pten. Importantly, several new potential drivers of histiocytic sarcoma were identified and could serve as targets for therapy for histiocytic sarcoma patients.  相似文献   

10.
J. Zhu 《Genetics》1995,141(4):1633-1639
A genetic model with additive-dominance effects and genotype X environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t - 1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.  相似文献   

11.
Cultivated rice was domesticated from common wild rice. However, little is known about genetic adaptation under domestication. We investigated the nucleotide variation of both cultivated rice and its wild progenitors at 22 R-gene and 10 non–R-gene loci. A significant regression was observed between wild rice and rice cultivars in their polymorphic levels, particularly in their nonsynonymous substitutions (θ a ). Our data also showed that a similar proportion (approximately 60%) of nucleotide variation in wild rice was retained in cultivated rice in both R-genes and non–R-genes. Interestingly, the slope always was >1 and the intercept always >0 in linear regressions when a cultivar’s polymorphism was x-axis. The slope and intercept values can provide a basis by which to estimate the founder effect and the strength of artificial direct selection. A larger founder effect than previously reported and a strong direct-selection effect were shown in rice genes. In addition, two-directional selection was commonly found in differentiated genes between indica and japonica rice subspecies. This kind of selection may explain the mosaic origins of indica and japonica rice subspecies. Furthermore, in most R-genes, no significant differentiation between cultivated and wild rice was detected. We found evidence for genetic introgression from wild rice, which may have played an important role during the domestication of rice R-genes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Yuanli Zhang and Jiao Wang contributed equally to this work.  相似文献   

12.
Since being domesticated about 10,000–12,000 years ago, domestic pigs (Sus scrofa domesticus) have been selected for traits of economic importance, in particular large body size. However, Yucatan miniature pigs have been selected for small body size to withstand high temperature environment and for laboratory use. This renders the Yucatan miniature pig a valuable model for understanding the evolution of body size. We investigate the genetic signature for selection of body size in the Yucatan miniature pig. Phylogenetic distance of Yucatan miniature pig was compared to other large swine breeds (Yorkshire, Landrace, Duroc and wild boar). By estimating the XP-EHH statistic using re-sequencing data derived from 70 pigs, we were able to unravel the signatures of selection of body size. We found that both selections at the level of organism, and at the cellular level have occurred. Selection at the higher levels include feed intake, regulation of body weight and increase in mass while selection at the molecular level includes cell cycle and cell proliferation. Positively selected genes probed by XP-EHH may provide insight into the docile character and innate immunity as well as body size of Yucatan miniature pig.  相似文献   

13.
14.
Conditional proteolysis is a crucial process regulating the abundance of key regulatory proteins associated with the cell cycle, differentiation pathways, or cellular response to abiotic stress in eukaryotic and prokaryotic organisms. We provide evidence that conditional proteolysis is involved in the rapid and dramatic reduction in abundance of the cyanobacterial RNA helicase, CrhR, in response to a temperature upshift from 20 to 30°C. The proteolytic activity is not a general protein degradation response, since proteolysis is only present and/or functional in cells grown at 30°C and is only transiently active at 30°C. Degradation is also autoregulatory, since the CrhR proteolytic target is required for activation of the degradation machinery. This suggests that an autoregulatory feedback loop exists in which the target of the proteolytic machinery, CrhR, is required for activation of the system. Inhibition of translation revealed that only elongation is required for induction of the temperature-regulated proteolysis, suggesting that translation of an activating factor was already initiated at 20°C. The results indicate that Synechocystis responds to a temperature shift via two independent pathways: a CrhR-independent sensing and signal transduction pathway that regulates induction of crhR expression at low temperature and a CrhR-dependent conditional proteolytic pathway at elevated temperature. The data link the potential for CrhR RNA helicase alteration of RNA secondary structure with the autoregulatory induction of conditional proteolysis in the response of Synechocystis to temperature upshift.  相似文献   

15.
The potential role of the cell-of-origin in determining the tumor phenotype has been raised, but not adequately examined. We hypothesized that distinct cells-of-origin may play a role in determining ovarian tumor phenotype and outcome. Here we describe a new cell culture medium for in vitro culture of paired normal human ovarian (OV) and fallopian tube (FT) epithelial cells from donors without cancer. While these cells have been cultured individually for short periods of time, to our knowledge this is the first long-term culture of both cell types from the same donors. Through analysis of the gene expression profiles of the cultured OV/FT cells we identified a normal cell-of-origin gene signature that classified primary ovarian cancers into OV-like and FT-like subgroups; this classification correlated with significant differences in clinical outcomes. The identification of a prognostically significant gene expression signature derived solely from normal untransformed cells is consistent with the hypothesis that the normal cell-of-origin may be a source of ovarian tumor heterogeneity and the associated differences in tumor outcome.  相似文献   

16.
17.
Hepatocellular carcinoma (HCC) is the fifth common cancer. The differential expression of microRNAs (miRNAs) has been associated with the prognosis of various cancers. However, limited information is available regarding genome-wide miRNA expression profiles in HCC to generate a tumor-specific miRNA signature of prognostic values. In this study, the miRNA profiles in 327 HCC patients, including 327 tumor and 43 adjacent non-tumor tissues, from The Cancer Genome Atlas (TCGA) Liver hepatocellular carcinoma (LIHC) were analyzed. The associations of the differentially expressed miRNAs with patient survival and other clinical characteristics were examined with t-test and Cox proportional regression model. Finally, a tumor-specific miRNA signature was generated and examined with Kaplan–Meier survival, univariate\multivariate Cox regression analyses and KEGG pathway analysis. Results showed that a total of 207 miRNAs were found differentially expressed between tumor and adjacent non-tumor HCC tissues. 78 of them were also discriminatively expressed with gender, race, tumor grade and AJCC tumor stage. Seven miRNAs were significantly associated with survival (P value <0.001). Among the seven significant miRNAs, six (hsa-mir-326, hsa-mir-3677, hsa-mir-511-1, hsa-mir-511-2, hsa-mir-9-1, and hsa-mir-9-2) were negatively associated with overall survival (OS), while the remaining one (hsa-mir-30d) was positively correlated. A tumor-specific 7-miRNAs signature was generated and validated as an independent prognostic predictor. Collectively, we have identified and validated an independent prognostic model based on the expression of seven miRNAs, which can be used to assess patients’ survival. Additional work is needed to translate our model into clinical practice.  相似文献   

18.
19.
Many studies have established gene expression-based prognostic signatures for lung cancer. All of these signatures were built from training data sets by learning the correlation of gene expression with the patients'' survival time. They require all new sample data to be normalized to the training data, ultimately resulting in common problems of low reproducibility and impracticality. To overcome these problems, we propose a new signature model which does not involve data training. We hypothesize that the imbalance of two opposing effects in lung cancer cells, represented by Yin and Yang genes, determines a patient’s prognosis. We selected the Yin and Yang genes by comparing expression data from normal lung and lung cancer tissue samples using both unsupervised clustering and pathways analyses. We calculated the Yin and Yang gene expression mean ratio (YMR) as patient risk scores. Thirty-one Yin and thirty-two Yang genes were identified and selected for the signature development. In normal lung tissues, the YMR is less than 1.0; in lung cancer cases, the YMR is greater than 1.0. The YMR was tested for lung cancer prognosis prediction in four independent data sets and it significantly stratified patients into high- and low-risk survival groups (p = 0.02, HR = 2.72; p = 0.01, HR = 2.70; p = 0.007, HR = 2.73; p = 0.005, HR = 2.63). It also showed prediction of the chemotherapy outcomes for stage II & III. In multivariate analysis, the YMR risk factor was more successful at predicting clinical outcomes than other commonly used clinical factors, with the exception of tumor stage. The YMR can be measured in an individual patient in the clinic independent of gene expression platform. This study provided a novel insight into the biology of lung cancer and shed light on the clinical applicability.  相似文献   

20.
Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号