首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The amino acid sequence of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) small subunit (SSU) from Euglena has been established by alignment of the sequence of peptides obtained by cleavage with chymotrypsin, trypsin, Staphylococcus aureus protease or formic acid. The Euglena SSU has 138 amino acids and thus represents longest SSU sequence described so far. Homology is only 41% with cyanobacteria SSU and about 51% with higher plant SSU, whereas it is around 75% between higher plants. The largest homologous portion between all the known SSU sequences is localized in the second half and covers about 20 amino acids. The phylogenetic tree based on known SSU sequences has been established and the rate of amino acid substitution for SSU is estimated to be about 1.35×10-9 per year and per site. Despite heterogeneity in amino acid sequence, we found that the overall secondary structure is fairly well conserved.Abbreviations DABITC Dimethyl amino azobenzene isothiocyanate - HPLC high pressure liquid chromatography - Kd Kilo daltons - LSU large subunit - PITC phenyl isothiocyanate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate - SSU small subunit - TFA trifluoric acetic acid  相似文献   

2.
Most molecular ecological studies of arbuscular mycorrhizal fungi (AMF) have been based on the rRNA gene sequences. However, information about intraspecific nucleotide variation is still limited in these fungi. In this study, we calculated the inter- and intrasporal nucleotide variation of Diversispora sp. EE1 using 78 cloned sequences from four spores within a ca 4960 bp fragment of the nuclear ribosomal operon spanning the near full length small ribosomal subunit (SSU) rRNA gene, the full internal transcribed spacer (ITS: ITS1-5.8S-ITS2) and ca 2740 bp of the large ribosomal subunit (LSU) rRNA gene. Data for each marker region (SSU, ITS and LSU) originated from the very same spores. Sequence variation resulting from point mutations and small indels was recorded in all regions. Highest sequence variation was observed in the ITS region at both the inter- and intrasporal levels. The ITS1 component was more variable than ITS2, whilst the 5.8S gene was the least variable component of the ITS region. Evolutionary divergence of gene copies between spores was intermediate for the LSU and lowest for the SSU. The SSU and the LSU genes had relatively similar evolutionary divergence per spore. Sequence variant richness was not exhaustive for any of the marker regions, indicating that multiple sequences per spore from multiple spores are needed when characterizing a species. This study provides reference sequences for ecological studies, permitting identification of AMF using any of the ribosomal regions or primer systems.  相似文献   

3.
Analyses of small subunit ribosomal RNA genes (SSU rDNAs) have significantly influenced our understanding of the composition of aquatic microbial assemblages. Unfortunately, SSU rDNA sequences often do not have sufficient resolving power to differentiate closely related species. To address this general problem for uncultivated bacterioplankton taxa, we analysed and compared sequences of polymerase chain reaction (PCR)-generated and bacterial artificial chromosome (BAC)-derived clones that contained most of the SSU rDNAs, the internal transcribed spacer (ITS) and the large subunit ribosomal RNA gene (LSU rDNA). The phylogenetic representation in the rRNA operon PCR library was similar to that reported previously in coastal bacterioplankton SSU rDNA libraries. We observed good concordance between the phylogenetic relationships among coastal bacterioplankton inferred from SSU or LSU rDNA sequences. ITS sequences confirmed the close intragroup relationships among members of the SAR11, SAR116 and SAR86 clades that were predicted by SSU and LSU rDNA sequence analyses. We also found strong support for homologous recombination between the ITS regions of operons from the SAR11 clade.  相似文献   

4.
Terpenes (isoprenoids), derived from isoprenyl pyrophosphates, are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. Divergent evolution of homomeric prenyltransferases (PTSs) has allowed PTSs to optimize their active-site pockets to achieve catalytic fidelity and diversity. Little is known about heteromeric PTSs, particularly the mechanisms regulating formation of specific products. Here, we report the crystal structure of the (LSU · SSU)2-type (LSU/SSU = large/small subunit) heterotetrameric geranyl pyrophosphate synthase (GPPS) from mint (Mentha piperita). The LSU and SSU of mint GPPS are responsible for catalysis and regulation, respectively, and this SSU lacks the essential catalytic amino acid residues found in LSU and other PTSs. Whereas no activity was detected for individually expressed LSU or SSU, the intact (LSU · SSU)2 tetramer produced not only C10-GPP at the beginning of the reaction but also C20-GGPP (geranylgeranyl pyrophosphate) at longer reaction times. The activity for synthesizing C10-GPP and C20-GGPP, but not C15-farnesyl pyrophosphate, reflects a conserved active-site structure of the LSU and the closely related mustard (Sinapis alba) homodimeric GGPPS. Furthermore, using a genetic complementation system, we showed that no C20-GGPP is produced by the mint GPPS in vivo. Presumably through protein–protein interactions, the SSU remodels the active-site cavity of LSU for synthesizing C10-GPP, the precursor of volatile C10-monoterpenes.  相似文献   

5.
Functional ribosomes synthesize proteins in all living cells and are composed of two labile associated subunits, which are made of rRNA and ribosomal proteins. The rRNA of the small 40S subunit (SSU) of the functional eukaryotic 80S ribosome decodes the mRNA molecule and the large 60S subunit (LSU) rRNA catalyzes protein synthesis. Recent fine structure determinations of the ribosome renewed interest in the role of ribosomal proteins in modulation of the core ribosomal functions. RpL10/Grc5p is a component of the LSU and is a multifunctional translational regulator, operating in 60S subunit biogenesis, 60S subunit export and 60S subunit joining with the 40S subunit. Here, we report that rpL10/Grc5p functionally interacts with the nuclear export factor Nmd3p in modulation of the cellular polysome complement and with the small subunit protein rpS6 in subunit joining and differential protein expression.  相似文献   

6.
《FEMS yeast research》2005,5(3):271-280
Functional ribosomes synthesize proteins in all living cells and are composed of two labile associated subunits, which are made of rRNA and ribosomal proteins. The rRNA of the small 40S subunit (SSU) of the functional eukaryotic 80S ribosome decodes the mRNA molecule and the large 60S subunit (LSU) rRNA catalyzes protein synthesis. Recent fine structure determinations of the ribosome renewed interest in the role of ribosomal proteins in modulation of the core ribosomal functions. RpL10/Grc5p is a component of the LSU and is a multifunctional translational regulator, operating in 60S subunit biogenesis, 60S subunit export and 60S subunit joining with the 40S subunit. Here, we report that rpL10/Grc5p functionally interacts with the nuclear export factor Nmd3p in modulation of the cellular polysome complement and with the small subunit protein rpS6 in subunit joining and differential protein expression.  相似文献   

7.
Cohen I  Sapir Y  Shapira M 《Plant physiology》2006,141(3):1089-1097
We previously proposed a mechanism for control of Rubisco expression and assembly during oxidative stress in Chlamydomonas reinhardtii. The N terminus of the large subunit (LSU) comprises an RNA recognition motif (RRM) that is normally buried in the protein, but becomes exposed under oxidizing conditions when the glutathione pool shifts toward its oxidized form. Thus, de novo translation and assembly of Rubisco LSU stop with similar kinetics and the unpaired small subunit (SSU) is rapidly degraded. Here we show that the structure of the N-terminal domain is highly conserved throughout evolution, despite its relatively low sequence similarity. Furthermore, Rubisco from a broad evolutionary range of photosynthetic organisms binds RNA under oxidizing conditions, with dissociation constant values in the nanomolar range. In line with these observations, oxidative stress indeed causes a translational arrest in land plants as well as in Rhodospirillum rubrum, a purple bacterium that lacks the SSU. We highlight an evolutionary conserved element located within alpha-helix B, which is located in the center of the RRM and is also involved in the intramolecular interactions between two LSU chains. Thus, assembly masks the N terminus of the LSU hiding the RRM. When assembly is interrupted due to structural changes that occur under oxidizing conditions or in the absence of a dedicated chaperone, the N-terminal domain can become exposed, leading to the translational arrest of Rubisco LSU. Taken together, these results support a model by which LSU translation is governed by its dimerization. In the case that regulation of type I and type II Rubisco is conserved, the SSU does not appear to be directly involved in LSU translation.  相似文献   

8.
Of the three major bilaterian clades, Lophotrochozoa has the greatest diversity and disparity of body forms and is the least understood in terms of phylogenetic history. Within this clade, small nuclear ribosomal subunit (SSU or 18S) studies have failed to provide resolution and other molecular markers have insufficient taxon sampling. To examine relationships within Lophotrochozoa, we collected and complied complete SSU data and nearly complete (>90%) large nuclear ribosomal subunit (LSU or 28S) data totaling approximately 5kb per taxon, for 36 lophotrochozoans. Results of LSU and combined SSU+LSU likelihood analyses provide topologies more consistent with morphological data than analyses of SSU data alone. Namely, most phyla recognized on morphological grounds are recovered as monophyletic entities when the LSU data is considered (contra SSU data alone). These new data show with significant support that "Lophophorata" (traditionally recognized to include Brachiopoda, Phoronida, and Bryozoa) is not a monophyletic entity. Further, the data suggest that Platyzoa is real and may be derived within lophotrochozans rather than a basal or sister taxon. The recently discovered Cycliophora are allied to entoprocts, consistent with their initial placement based on morphology. Additional evidence for Syndermata (i.e., Rotifera+Acanthocephala) is also found. Although relationships among groups with trochophore-like larvae could not be resolved and nodal support values are generally low, the addition of LSU data is a considerable advance in our understanding of lophotrochozoan phylogeny from the molecular perspective.  相似文献   

9.
10.
11.
The genetic code is the syntactic foundation underlying the structure and function of every protein in the history of the biological world. Its highly ordered degenerate complexity suggests an incremental evolution, the result of a combination of selective, mechanistic, and random processes. These evolutionary processes are still poorly understood and remain an open question in the study of early life on Earth. We perform a compositional analysis of ribosomal proteins and ATPase subunits in bacterial and archaeal lineages, using conserved positions that came and remained under purifying selection before and up to the most recent common ancestor. An observable shift in amino acid usage at these conserved positions likely provides an untapped window into the history of protein sequence space, allowing events of genetic code expansion to be identified. We identify Cys, Glu, Phe, Ile, Lys, Val, Trp, and Tyr as recent additions to the genetic code, with Asn, Gln, Gly, and Leu among the more ancient. Our observations are consistent with a scenario in which genetic code expansion primarily favored amino acids that promoted an increase in polypeptide size and functionality. We propose that this expansion would have been critical in the takeover of many RNA-mediated processes, as well as the addition of novel biological functions inaccessible to an RNA-based physiology, such as crossing lipid membranes. Thus, expansion of the genetic code likely set the stage for the transition from RNA-based to protein-based life. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The precursor of all monoterpenes is the C10 acyclic intermediate geranyl diphosphate (GPP), which is formed from the C5 compounds isopentenyl diphosphate and dimethylallyl diphosphate by GPP synthase (GPPS). We have discovered that Antirrhinum majus (snapdragon) and Clarkia breweri, two species whose floral scent is rich in monoterpenes, both possess a heterodimeric GPPS like that previously reported from Mentha piperita (peppermint). The A. majus and C. breweri cDNAs encode proteins with 53% and 45% amino acid sequence identity, respectively, to the M. piperita GPPS small subunit (GPPS.SSU). Expression of these cDNAs in Escherichia coli yielded no detectable prenyltransferase activity. However, when each of these cDNAs was coexpressed with the M. piperita GPPS large subunit (GPPS.LSU), which shares functional motifs and a high level of amino acid sequence identity with geranylgeranyl diphosphate synthases (GGPPS), active GPPS was obtained. Using a homology-based cloning strategy, a GPPS.LSU cDNA also was isolated from A. majus. Its coexpression in E. coli with A. majus GPPS.SSU yielded a functional heterodimer that catalyzed the synthesis of GPP as a main product. The expression in E. coli of A. majus GPPS.LSU by itself yielded active GGPPS, indicating that in contrast with M. piperita GPPS.LSU, A. majus GPPS.LSU is a functional GGPPS on its own. Analyses of tissue-specific, developmental, and rhythmic changes in the mRNA and protein levels of GPPS.SSU in A. majus flowers revealed that these levels correlate closely with monoterpene emission, whereas GPPS.LSU mRNA levels did not, indicating that the levels of GPPS.SSU, but not GPPS.LSU, might play a key role in regulating the formation of GPPS and, thus, monoterpene biosynthesis.  相似文献   

13.
In this study, evidence for at least three independent losses of photosynthesis in the freshwater cryptophyte genus Cryptomonas is presented. The phylogeny of the genus was inferred by molecular phylogenetic analyses of the nuclear internal transcribed spacer 2 (nuclear ITS2), partial nuclear large subunit ribosomal DNA (LSU rDNA), and nucleomorph small subunit ribosomal DNA (SSU rDNA, NM). Both concatenated and single data sets were used. In all data sets, the colorless Cryptomonas strains formed three different lineages, always supported by high bootstrap values (maximum parsimony, neighbor joining and maximum likelihood) and posterior probabilities (Bayesian analyses). The three leukoplast-bearing lineages displayed differing degrees of accelerated evolutionary rates in nuclear and nucleomorph rDNA. Also an increase in A+T-content in highly variable regions of the nucleomorph SSU rDNA was observed in one of the leukoplast-bearing lineages.This article contains three online-only supplementary tables.Reviewing Editor: Dr. Yves Van de Peer  相似文献   

14.
Evolutionary trees were constructed, by distance methods, from an alignment of 225 complete large subunit (LSU) rRNA sequences, representing Eucarya, Archaea, Bacteria, plastids, and mitochondria. A comparison was made with trees based on sets of small subunit (SSU) rRNA sequences. Trees constructed on the set of 172 species and organelles for which the sequences of both molecules are known had a very similar topology, at least with respect to the divergence order of large taxa such as the eukaryotic kingdoms and the bacterial divisions. However, since there are more than ten times as many SSU as LSU rRNA sequences, it is possible to select many SSU rRNA sequence sets of equivalent size but different species composition. The topologies of these trees showed considerable differences according to the particular species set selected.The effect of the dataset and of different distance correction methods on tree topology was tested for both LSU and SSU rRNA by repetitive random sampling of a single species from each large taxon. The impact of the species set on the topology of the resulting consensus trees is much lower using LSU than using SSU rRNA. This might imply that LSU rRNA is a better molecule for studying wide-range relationships. The mitochondria behave clearly as a monophyletic group, clustering with the Proteobacteria. Gram-positive bacteria appear as two distinct groups, which are found clustered together in very few cases. Archaea behave as if monophyletic in most cases, but with a low confidence.Abbreviations LSU rRNA large subunit ribosomal RNA - SSU rRNA small subunit ribosomal RNA - JC Jukes and Cantor - JN Jin and Nei Correspondence to: R. De Wachter  相似文献   

15.
We investigated evolutionary relationships among deuterostome subgroups by obtaining nearly complete large-subunit ribosomal RNA (LSU rRNA)-gene sequences for 14 deuterostomes and 3 protostomes and complete small-subunit (SSU) rRNA-gene sequences for five of these animals. With the addition of previously published sequences, we compared 28 taxa using three different data sets (LSU only, SSU only, and combined LSU + SSU) under minimum evolution (with LogDet distances), maximum likelihood, and maximum parsimony optimality criteria. Additionally, we analyzed the combined LSU + SSU sequences with spectral analysis of LogDet distances, a technique that measures the amount of support and conflict within the data for every possible grouping of taxa. Overall, we found that (1) the LSU genes produced a tree very similar to the SSU gene tree, (2) adding LSU to SSU sequences strengthened the bootstrap support for many groups above the SSU-only values (e.g., hemichordates plus echinoderms as Ambulacraria; lancelets as the sister group to vertebrates), (3) LSU sequences did not support SSU-based hypotheses of pterobranchs evolving from enteropneusts and thaliaceans evolving from ascidians, and (4) the combined LSU + SSU data are ambiguous about the monophyly of chordates. No tree-building algorithm united urochordates conclusively with other chordates, although spectral analysis did so, providing our only evidence for chordate monophyly. With spectral analysis, we also evaluated several major hypotheses of deuterostome phylogeny that were constructed from morphological, embryological, and paleontological evidence. Our rRNA-gene analysis refutes most of these hypotheses and thus advocates a rethinking of chordate and vertebrate origins.  相似文献   

16.
The ribosomal RNA (rRNA) gene region of the microsporidium Heterosporis anguillarum has been examined. Complete DNA sequence data (4060 bp, GenBank Accession No. AF402839) of the rRNA gene of H. anguillarum are presented for the small subunit gene (SSU rRNA: 1359 bp), the internal transcribed spacer (ITS: 37 bp), and the large subunit gene (LSU rRNA: 2664 bp). The secondary structures of the H. anguillarum SSU and LSU rRNA genes are constructed and described. This is the first complete sequence of an rRNA gene published for a fish-infecting microsporidian species. In the phylogenetic analysis, the sequences, including partial SSU rRNA, ITS, and partial LSU rRNA sequences of the fish-infecting microsporidia, were aligned and analysed. The taxonomic position of H. anguillarum as suggested by Lom et al. (2000; Dis Aquat Org 43:225-231) is confirmed in this paper.  相似文献   

17.
Ecological adaptation to environmental changes is a strong driver of evolution, enabling speciation of pelagic plankton in the open ocean without the presence of effective physical barriers to gene flow. The tropical ocean environment, which plays an important role in shaping marine biodiversity, has drastically and frequently changed since the Pliocene. Nevertheless, the evolutionary history of tropical pelagic plankton has been poorly understood, as phylogeographic investigations are still in the developing state and paleontological approaches are insufficient to obtain a sequential record from the deep-sea sediments. The planktonic foraminifer Pulleniatina obliquiloculata is widely distributed in the tropical area throughout the world’s oceans, and its phylogeography is well established. It is thus one of the best candidates to examine how past environmental changes may have shifted the spatial distribution and affected the diversification of tropical pelagic plankton. Such an examination requires the divergence history of the planktonic foraminifers, yet the gene marker (partial small subunit (SSU) rDNA) previously used for phylogeographic studies was not powerful enough to achieve a high accuracy in estimating the divergence times. The present study focuses on improving the precision of divergence time estimates for the splits between sibling species (genetic types) of planktonic foraminifers by increasing the number of genes as well as the number of nucleotide bases used for molecular clock estimates. We have amplified the entire coding regions of two ribosomal RNA genes (SSU rDNA and large subunit (LSU) rDNA) of three genetic types of P. obliquiloculata and two closely related species for the first time and applied them to the Bayesian relaxed clock method. The comparison of the credible intervals of the four datasets consisting either of sequences of the partial SSU rDNA, the complete SSU rDNA, LSU rDNA, or a combination of both genes (SSU+LSU) clearly demonstrated that the two-gene dataset improved the accuracy of divergence time estimates. The P. obliquiloculata lineage diverged twice, first at the end of the Pliocene (3.1 Ma) and again in the middle Pleistocene (1.4 Ma). Both timings coincided with the environmental changes, which indirectly involved geographic separation of populations. The habitat of P. obliquiloculata was expanded toward the higher latitudinal zones during the stable warm periods and subsequently placed on the steep environmental gradients following the global cooling. Different environmental conditions in the stable warm tropics and unstable higher latitudes may have triggered ecological divergence among the populations, leading to adaptive differentiation and eventually speciation. A comprehensive analysis of divergence time estimates combined with phylogeography enabled us to reveal the evolutionary history of the pelagic plankton and to find the potential paleoenvironmental events, which could have changed their biogeography and ecology.  相似文献   

18.
As "the most abundant protein in the world,' ribulose-1,5-bisphosphate carboxylase (RuBisCO) attracts the attention of genetic engineers and plant phylogeneticists. The active site, which is responsible for almost all carbon fixation on earth, is in the large subunit (LSU). Over 30% of the 476 amino acids in the LSU are involved in intermolecular associations. Using available sequence data, we find that 105 (22%) of the residues are absolutely conserved across 499 seed plants, with an additional 110 demonstrating only one change. Our analyses show that conserved domains are not fully explained by current structural data. This has several implications for systematic studies. First, the number of potentially variable sites is likely to be slightly over 1000, rather than 1428. Second, rates of change can vary greatly across the molecule; functional constraints on amino acids and codon biases greatly increase the potential for homoplasy. Third, some changes are correlated, and thus might be down-weighted accordingly. Fourth, some of the variation in RuBisCO may be adaptive and present insights into the nature of evolutionary change in response to the environment.  相似文献   

19.
Summary Sequences of small subunit (SSU) and large subunit (LSU) ribosomal RNA genes from archaebacteria, eubacteria, and the nucleus, chloroplasts, and mitochondria of eukaryotes have been compared in order to identify the most conservative positions. Aligned sets of these positions for both SSU and LSU rRNA have been used to generate tree diagrams relating the source organisms/organelles. Branching patterns were evaluated using the statistical bootstrapping technique. The resulting SSU and LSU trees are remarkably congruent and show a high degree of similarity with those based on alternative data sets and/or generated by different techniques. In addition to providing insights into the evolution of prokaryotic and eukaryotic (nuclear) lineages, the analysis reported here provides, for the first time, an extensive phylogeny of the mitochondrial lineage.  相似文献   

20.
The isolated leaf proteins of lucerne (Medicago sativa L. and M. falcata L.) were fractionated by Sepharose 6B column chromatography. Analysis of fractionated proteins indicated that the 2nd peak component was almost entirely ribulose 1,5 bisphosphate carboxylase-oxygenase (Rubisco) which represented 57% of the total recovered protein.Rubisco yielded one large subunit (LSU) and one small subunit (SSU) polypeptide after SDS gel electrophoresis.Isoelectric focusing of the SSU of Rubisco from genotypes of M. sativa cv. Hunter River (HR), Hairy Peruvian (HP) and of M. falcata (MF) showed two SSU components for HR and HP, and three components for MF. Most components of genotypes were located in the alkaline region of the gel. While the pIs of the SSU components of HR and HP were identical they differed from those of the SSU of MF thus demonstrating heterogeneity for SSU in Medicago.It is suggested that the alkaline nature of SSU may have some adaptive physiological significance.Abbreviations Rubisco ribulose bisphosphate 1,5-carboxylase-oxygenase - LSU large subunit - SSU small subunit - HR Hunter River - HP Hairy Peruvian - MF Medicago falcata - SDS Sodium dodecyl sulphate - TCA trichloracetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号