首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple, superimposed Type I interferon (IFN) restriction fragments were resolved following 72–92 h of horizontal electrophoresis. Restriction fragment length polymorphisms (RFLPs) for α IFN (IFNA), β IFN (IFNB), ωIFN (IFNW) and trophoblast IFN (IFNT) genes were identified in Hin dill, Eco RI and Taql digestions from 313 cattle. RFLPs with codominant segregation in cattle pedigrees were considered alleles, and 19 distinct polymorphic Type I IFN loci (5 IFNA, 4 IFNB, 8 IFNW and 2 IFNT) were identified. Allele frequencies and observed heterozygosity values were calculated for each locus and several loci were considered highly informative for linkage analysis. Bovine IFN gene numbers (10 IFNA, 6 IFNB, 20 IFNW and 6 IFNT) were estimated from the number of polymorphic loci plus additional monomorphic hybridizing bands present in Eco RI and Hindlll digestions. Physical linkage of the Type I IFN gene families on bovine chromosome 8 was demonstrated by pulsed field gel electrophoresis (PFGE). Hybridization of two or more IFN probes to similarly sized PFGE fragments suggested the tentative gene family order: IFNA/IFNW-IFNT-IFNB. These studies provide a basis for the development of more detailed genetic and physical maps of the bovine Type I IFNs.  相似文献   

2.
3.
Type I interferons (IFNs) have been shown to be involved in many immune defence and inflammatory responses. We here show that IFN-beta plays an absolute essential role in the efficient induction of all type I IFNs after infection of primary embryonic as well as primary adult fibroblasts with Sendai virus. In contrast, after immortalization of such fibroblasts with SV40 large T antigen, IFN-alpha4 can be induced independently of IFN-beta. However, efficient secretion of type I IFNs even in immortalized fibroblasts is only found when the complete signalling loop is induced by IFN-beta.  相似文献   

4.
Type III interferons (IFNs) represent the most recently discovered group of IFNs. Together with type I IFNs (e.g. IFN-α/β), type III IFNs (IFN-λ) are produced as part of the innate immune response to virus infection, and elicit an anti-viral state by inducing expression of interferon stimulated genes (ISGs). It was initially thought that type I IFNs and type III IFNs perform largely redundant functions. However, it has become evident that type III IFNs particularly play a major role in antiviral protection of mucosal epithelial barriers, thereby serving an important role in the first-line defense against virus infection and invasion at contact areas with the outside world, versus the generally more broad, potent and systemic antiviral effects of type I IFNs. Herpesviruseses are large DNA viruses, which enter their host via mucosal surfaces and establish lifelong, latent infections. Despite the importance of mucosal epithelial cells in the pathogenesis of herpesviruses, our current knowledge on the interaction of herpesviruses with type III IFN is limited and largely restricted to studies on the alphaherpesvirus herpes simplex virus (HSV). This review summarizes the current understanding about the role of IFN-λ in the immune response against herpesvirus infections.  相似文献   

5.
Type I interferons (IFNs) are known to mediate viral control, and also promote survival and expansion of virus-specific CD8+ T cells. However, it is unclear whether signaling cascades involved in eliciting these diverse cellular effects are also distinct. One of the best-characterized anti-viral signaling mechanisms of Type I IFNs is mediated by the IFN-inducible dsRNA activated protein kinase, PKR. Here, we have investigated the role of PKR and Type I IFNs in regulating viral clearance and CD8+ T cell response during primary and secondary viral infections. Our studies demonstrate differential requirement for PKR, in viral control versus elicitation of CD8+ T cell responses during primary infection of mice with lymphocytic choriomeningitis virus (LCMV). PKR-deficient mice mounted potent CD8+ T cell responses, but failed to effectively control LCMV. The compromised LCMV control in the absence of PKR was multifactorial, and linked to less effective CD8+ T cell-mediated viral suppression, enhanced viral replication in cells, and lower steady state expression levels of IFN-responsive genes. Moreover, we show that despite normal expansion of memory CD8+ T cells and differentiation into effectors during a secondary response, effective clearance of LCMV but not vaccinia virus required PKR activity in infected cells. In the absence of Type I IFN signaling, secondary effector CD8+ T cells were ineffective in controlling both LCMV and vaccinia virus replication in vivo. These findings provide insight into cellular pathways of Type I IFN actions, and highlight the under-appreciated importance of innate immune mechanisms of viral control during secondary infections, despite the accelerated responses of memory CD8+ T cells. Additionally, the results presented here have furthered our understanding of the immune correlates of anti-viral protective immunity, which have implications in the rational design of vaccines.  相似文献   

6.
Type I interferons (IFNs) play a critical role in antiviral immune responses, but can be deleterious to the host during some bacterial infections. Listeria monocytogenes (Lm) induces a type I IFN response by activating cytosolic antiviral surveillance pathways. This is beneficial to the bacteria as mice lacking the type I IFN receptor (IFNAR1?/?) are resistant to systemic infection by Lm. The mechanisms by which type I IFNs promote Lm infection are unclear. Here, we show that IFNAR1 is required for dissemination of Lm within infection foci in livers of infected mice and for efficient cell‐to‐cell spread in vitro in macrophages. IFNAR1 promotes ActA polarization and actin‐based motility in the cytosol of host cells. Our studies suggest type I IFNs directly impact the intracellular life cycle of Lm and provide new insight into the mechanisms used by bacterial pathogens to exploit the type I IFN response.  相似文献   

7.
The natural history of hepatitis B virus (HBV) infection is probably related to host immune factors. Interferon-γ (IFN-γ) plays significant roles in immune defense. This study was undertaken to investigate the association between HBV infection and single nucleotide polymorphisms (SNPs) of IFN-γ, IFN-γ receptor (IFNGR)-1 and 2, and interferon regulatory factor (IRF)-1 genes. Between March 2002 and December 2002, 614 Korean patients were enrolled in two different groups: an HBV clearance group (n = 201), who were hepatitis B surface antigen (HBsAg) negative with antibodies to HBsAg and hepatitis B core antigen, and an HBV persistence group (n = 413), who were repeatedly HBsAg positive. We assessed polymorphisms in the IFN-γ gene at position +874, in the IFNGR-1 gene at positions −56 and +95, in the IFNGR-2 gene at the second position of codon 64 (Gln64Arg), and in the IRF-1 gene promoter (−410, −388), and the genotype distributions of the HBV clearance and persistence groups were compared. On the basis of unconditional logistic regression analysis with adjustment for age and sex, no statistically significant association with susceptibility to persistent HBV infection was observed with the IFN-γ, IFNGR-1 and 2, and IRF-1 gene polymorphisms under the codominant, dominant, and recessive models.  相似文献   

8.
Resonance Raman (RR) spectroscopy was used to investigate conformational characteristics of the hemes of several ferricytochromes of the cytochrome c 3 family, electron transfer proteins isolated from the periplasm and membranes of sulfate-reducing bacteria. Our analysis concentrated on the low-frequency region of the RR spectra, a fingerprint region that includes vibrations for heme-protein C–S bonds [ν(CaS)]. It has been proposed that these bonds are directly involved in the electron transfer process. The three groups of tetraheme cytochrome c 3 analyzed, namely Type I cytochrome c 3 (TpIc 3s), Type II cytochrome c 3 (TpIIc 3s) and Desulfomicrobium cytochromes c 3, display different frequency separations for the two ν(CaS) lines that are similar among members of each group. These spectral differences correlate with differences in protein structure observed among the three groups of cytochromes c 3. Two larger cytochromes of the cytochrome c 3 family display RR spectral characteristics for the ν(CaS) lines that are closer to TpIIc 3 than to TpIc 3. Two other multiheme cytochromes from Desulfovibrio that do not belong to the cytochrome c 3 family display ν(CaS) lines with reverse relative areas in comparison with the latter family. This RR study shows that the small differences in protein structure observed among these cytochrome c 3 correlate to differences on the heme–protein bonds, which are likely to have an impact upon the protein function, making RR spectroscopy a sensitive and useful tool for characterizing these cytochromes.  相似文献   

9.
HLA-A and-B are expressed by most cell types, and their levels can be increased by treatment with interferons (IFNs). The relative basal levels of HLA-A and-B expression can vary, and HLA-B loci are induced much more strongly by IFNs. Constitutive activity is dependent on an upstream enhancer (ENH) which contains a rel (KBF, NFB) binding motif, and induction is mediated by an interferon response element (IRE) which binds members of the IRF family. Reported here is the identification of a regulatory element, R, which overlaps the IRE of HLA-B loci, but which is absent from the equivalent region of HLA-A or H2 class I genes. The core of the element, CACGAG, is bound by a nuclear factor which is recognized by an antiserum raised against the upstream stimulation factor (USF), a member of the helix-loop-helix/leucine zipper family. The use of reporter gene constructs shows that mutation of the R element results in increased induction by IFN in some cell lines, which appears to be due to competitive binding of USF with IRF proteins. Correspondence to: J. Girdlestone.  相似文献   

10.
Liver transplantation is one of the most important therapies for end-stage liver diseases and is associated with major problems including infections and acute rejection. The outcome of transplantation can be determined by immune responses as a key role in response to the graft. Inflammatory and anti-inflammatory mediators especially cytokines influence the graft microenvironment. Th1 and Th2 immune responses in contrast to regulatory responses cause acute rejection or help graft survival. In this study, we evaluated the gene polymorphisms of IL-6 G-174C, TGF-β T + 869C, IL-4 C-590T, and IFN-γ T + 874A cytokines in liver transplant patients. ARMS-PCR method was used to characterize IL-6 G-174C, TGF-β T + 869C and IFN-γ T + 874A polymorphisms and PCR-RFLP using AvaII restriction enzyme was done for IL-4 C-590T characterization in 70 liver transplant patients. Acute rejection episodes were diagnosed according to standard criteria. The analysis of the results showed that IL-6-174 GG genotype ( P = 0.009, OR = 4.333, 95% CI = 1.043–18.000), IL-6-174G allele (P = 0.011, OR = 5.273, 95% CI = 1.454–19.127) was more frequent and IFN-γ +874 TT genotype was less frequent (P = 0.043, OR = 0.143, 95% CI = 0.0118–1.190) in acute rejection than in non-rejection patients. TGF-β T + 869C and IL-4 C-590T frequencies were not significantly different (P > 0.05). According to the results, it can be conclude that IL-6 G-174C and IFN-γ T + 874A gene polymorphisms have predictive values for acute rejection after liver transplantation. High producer genotype of IL-6 is a genetic risk factor and IFN-γ is a protective factor for acute rejection development.  相似文献   

11.
Acute rejection is a common phenomenon in transplantation. Inflammatory and anti-inflammatory mediators affect the graft microenvironment. Th1 responses cause acute rejection while Th2 immune responses help the survival of the graft. In this study, we evaluated gene polymorphisms of IL-6 G-174C, TGF-β T+869C, IL-4 C-590T, and IFN-γ T+874A cytokines in renal transplant patients. ARMS-PCR method was used to characterize IL-6 G-174C (rs76144090), TGF-β T+869C (rs1800471), and IFN-γ T+874A (rs2430561) polymorphisms and PCR-RFLP, for characterization of IL-4 C-590T (rs2243250) in 100 renal transplant patients. Acute rejection episodes were diagnosed according to the standard criteria. Analysis of the results showed that IL-6-174 GG genotype (P = 0.018, OR = 3.023, 95% CI = 1.183–7.726) and IL-6-174G allele (P = 0.046, OR = 2.114, 95% CI = 1.005–4.447) were more frequent, but IL-6-174GC genotype was less frequent in acute rejection of kidney transplantation in comparison with control group (P = 0.024, OR = 0.302, 95% CI = 0.103–0.883). IFN-γ+874 T allele was associated with a higher risk of acute rejection (P = 0.019, OR = 2.088, 95% CI = 1.124–3.880) while IFN-γ+874 AA genotype was associated with a lower risk of rejection (P = 0.023, OR = 0.318, 95% CI = 0.115–0.875). Frequencies of TGF-β T+869C and IL-4 C-590T were not significantly different (P > 0.05). Consequently, our results show that IL-6 G-174C and IFN-γ T+874A gene polymorphisms have predictive values for acute rejection after renal transplantation in Iranian patients.  相似文献   

12.
Type I IFNs are a range of host-derived molecules with adjuvant potential; they have been used for many years in the treatment of cancer and viral hepatitis. Therefore, the safety of IFNs for human use has been established. In this study, we evaluated the mucosal adjuvanticity of IFN-β administered intranasally to mice with diphtheria toxoid, and suggested a method to improve its adjuvanticity. When IFN-β alone was used as a mucosal adjuvant, no clear results were obtained. However, simultaneous administration of IFN-β and chitosan resulted in an enhancement of the specific serum immunoglobulin G (IgG) and IgA antibody responses, the mucosal IgA antibody response, and antitoxin titers. Furthermore, the intranasal administration of IFN-α alone resulted in a greater increase in antibody titer than IFN-β, and a synergistic effect with chitosan was also observed. These findings suggest that intranasal administration of chitosan and Type I IFNs may display an effective synergistic mucosal adjuvant activity.  相似文献   

13.
Type I interferons (IFNs) are a family of cytokines that exhibit various biological activities. Besides their roles in immune response, IFNs have been known to modulate cell proliferation and to induce apoptosis. Thus, IFNs are used as an anti-tumor agent against certain types of cancer, but it is unclear why many other cancers are not influenced by IFNs. Here, we found that IFN-a2b, a subfamily of IFN-a, enhanced proliferation of HeLa cells, a cell line derived from human cervical cancer. IFN-a2b was rather inhibitory on the growth of other types of cervical cancer cells including those positive for HPV. Among the proliferation- and the apoptosis-related genes, p21cip1/waf1 (p21) was upregulated by IFN-a2b, whereas p53, p27 or BCL-2 associated X protein (BAX) was not affected. IFN-a2b did not alter promoter activities of p21 but did prolong the decay of p21 mRNA. In contrast, the level of p21 protein was lowered by IFN-a2b, and half-life analysis of p21 protein revealed that IFN-a2b enhances p21 protein instability in HeLa cells. Pretreatment of the cells with MG132, a proteasome inhibitor, abolished the IFN-a2b-mediated p21 degradation, suggesting that IFN-a2b accelerated the ubiquitin-proteasome dependent degradation of p21. Consistent with these results, IFN-a2b increased S-phase cell cycle distribution in HeLa cells. In addition, IFN-a2b liberated the cells from G1-phase arrest by 5-fluorouracil (5-FU) and from G2-phase arrest by paclitaxel. These results provide a novel role of Type I IFNs in cell cycle regulation and may define an importance of individualized IFN-based therapy against specific types of cancer.  相似文献   

14.
15.
Several reproductive triats in plants were studied in more than 200 populations of 61 wild species from diverse ecological conditions. As a result, it was found that there occur three distinct types of plants in the energy allocation patterns to reproductive structures (RA) and the propagule output per plant (PN), i.e. (1) the number of propagules per plant increases in response to the increase in RA (Type I), (2) the number of propagules decreases in response to the increase in RA (Type II), and (3) the RA remains constant despite the great differences in the propagule number per plant. A conspicuous trade-off relationship was also discovered to occur between the RA to a single propagule (RA) and the propagule output per plant (PN), such that log RA=logC−blot PN, or RA=C/PN b =CPN b , where C is a constant. The three different ranges ofb-values were recognized, i.e.b<1.0,b>1.0, andb=1.0, which correspond to Type I, Type II, and Type III, respectively. Related problems to the concept ofr- andK-strategy are also discussed.  相似文献   

16.
Type I interferons (IFNs) produced primarily by plasmacytoid dendritic cells (pDCs) as part of the innate immune response to infectious agents induce the maturation of myeloid DCs and enhance antigen presentation. Type I IFNs also enhance apoptosis of virus-infected cells, stimulate cross priming and enhanced presentation of viral peptides. Type I IFNs are powerful polyclonal B-cell activators that induce a strong primary humoral immune response characterized by isotype switching and protection against virus challenge. Type I IFNs stimulate an IgG2a antibody response characteristic of Th1 immunity when ad-mixed with influenza virus vaccine and injected intramuscurarly (i.m.) or administered intranasally. The adjuvant activity of type I IFNs has been shown to involve direct effects of IFN on B-cells, effects on T-cells, as well as effects on antigen presentation. Oromucosal administration of type I IFNs concomitantly with i.m. injection of vaccine alone can also enhance the antibody response to influenza vaccination by enhancing trafficking of antigen-presenting cells towards the site of vaccination. Recombinant IFNs are potent adjuvants that may find application in both parenterally and mucosally administered vaccines.  相似文献   

17.
Type I interferons (IFNs), key antiviral cytokines, evolve to adapt with ever-changing viral threats during vertebrate speciation. Due to novel pathogenic pressure associated with Suidae speciation and domestication, porcine IFNs evolutionarily engender both molecular and functional diversification, which have not been well addressed in pigs, an important livestock species and animal model for biomedical sciences. Annotation of current swine genome assembly Sscrofa10.2 reveals 57 functional genes and 16 pseudogenes of type I IFNs. Subfamilies of multiple IFNA, IFNW and porcine-specific IFND genes are separated into four clusters with ∼60 kb intervals within the IFNB/IFNE bordered region in SSC1, and each cluster contains mingled subtypes of IFNA, IFNW and IFND. Further curation of the 57 functional IFN genes indicates that they include 18 potential artifactual duplicates. We performed phylogenetic construction as well as analyses of gene duplication/conversion and natural selection and showed that porcine type I IFN genes have been undergoing active diversification through both gene duplication and conversion. Extensive analyses of the non-coding sequences proximal to all IFN coding regions identified several genomic repetitive elements significantly associated with different IFN subtypes. Family-wide studies further revealed their molecular diversity with respect to differential expression and restrictive activity on the resurgence of a porcine endogenous retrovirus. Based on predicted 3-D structures of representative animal IFNs and inferred activity, we categorized the general functional propensity underlying the structure-activity relationship. Evidence indicates gene expansion of porcine type I IFNs. Genomic repetitive elements that associated with IFN subtypes may serve as molecular signatures of respective IFN subtypes and genomic mechanisms to mediate IFN gene evolution and expression. In summary, the porcine type I IFN profile has been phylogenetically defined family-wide and linked to diverse expression and antiviral activity, which is important information for further biological studies across the porcine type I IFN family.  相似文献   

18.
Measles vaccines are highly effective and safe; however, the mechanism(s) underlying their attenuation has not been well understood. In this study, type I IFNs (IFN‐α and IFN‐β) induction in macaques infected with measles virus (MV) strains was examined. Type I IFNs were not induced in macaques infected with wild‐type MV. However, IFN‐α was sharply induced in most macaques infected with recombinant wild‐type MV bearing the hemagglutinin (H) protein of the Edmonston vaccine strain. These results indicate that the H protein of MV vaccine strains may have a role in MV attenuation.  相似文献   

19.
Plasmacytoid Dendritic Cells (pDCs) represent a key immune cell in the defense against viruses. Through pattern recognition receptors (PRRs), these cells detect viral pathogen associated molecular patterns (PAMPs) and initiate an Interferon (IFN) response. pDCs produce the antiviral IFNs including the well-studied Type I and the more recently described Type III. Recent genome wide association studies (GWAS) have implicated Type III IFNs in HCV clearance. We examined the IFN response induced in a pDC cell line and ex vivo human pDCs by a region of the HCV genome referred to as the HCV PAMP. This RNA has been shown previously to be immunogenic in hepatocytes, whereas the conserved X-region RNA is not. We show that in response to the HCV PAMP, pDC-GEN2.2 cells upregulate and secrete Type III (in addition to Type I) IFNs and upregulate PRR genes and proteins. We also demonstrate that the recognition of this RNA is dependent on RIG-I-like Receptors (RLRs) and Toll-like Receptors (TLRs), challenging the dogma that RLRs are dispensable in pDCs. The IFNs produced by these cells in response to the HCV PAMP also control HCV replication in vitro. These data are recapitulated in ex vivo pDCs isolated from healthy donors. Together, our data shows that pDCs respond robustly to HCV RNA to make Type III Interferons that control viral replication. This may represent a novel therapeutic strategy for the treatment of HCV.  相似文献   

20.
IFNs are a family of cytokines with pleiotropic biological effects mediated by scores of responsive genes. IFNs were the first human proteins to be effective in cancer therapy and were among the first recombinant DNA products to be used clinically. Both quality and quantity of life has been improved in response to IFNs in various malignancies. Despite its beneficial effects, unraveling the mechanisms of the anti-tumor effects of IFN has proven to be a complex task. IFNs may mediate anti-tumor effects either indirectly by modulating immunomodulatory and anti-angiogenic responses or by directly affecting proliferation or cellular differentiation of tumor cells. Both direct or indirect effects of IFNs result from induction of a subset of genes, called IFN stimulated genes (ISGs). In addition to the ISGs implicated in anti-viral, anti-angiogenic, immunomodulatory and cell cycle inhibitory effects, oligonucleotide microarray studies have identified ISGs with apoptotic functions. These include TNF- related apoptosis inducing ligand (TRAIL/Apo2L), Fas/FasL, XIAP associated factor-1 (XAF-1), caspase-4, caspase-8, dsRNA activated protein kinase (PKR), 2'5'A oligoadenylate synthetase (OAS), death activating protein kinases (DAP kinase), phospholipid scramblase, galectin 9, IFN regulatory factors (IRFs), promyelocytic leukemia gene (PML) and regulators of IFN induced death (RIDs). In vitro IFN-, IFN- and IFN- induced apoptosis in multiple cell lines of varied histologies. This review will emphasize possible mechanisms and the role of ISGs involved in mediating apoptotic function of IFNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号