首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sizes of amino acid pools in growing Xenopus laevis oocytes have been measured. The total free amino acid content per oocyte increases nearly 25-fold during oocyte growth. Together, glutamic acid and aspartic acid account for approximately 59-75% of the total amino acid pool in Xenopus oocytes. On the other hand, methionine and cysteine are the least abundant of the amino acids detected, each accounting for less than 0.7% of the total pool in developing oocytes. It is argued that the acid-extractable amino acid pool represents the precursor pool used in protein synthesis.  相似文献   

2.
The amino acid pools in Chinese hamster lung V79 cells were measured as a function of time during hyperthermic exposure at 40.5 degrees and 45.0 degrees C. Sixteen of the 20 protein amino acids were present in sufficient quantity to measure accurately. The total amino acid pool and all individual amino acids, except glutamine, remained relatively constant for at least 90 min at 40.5 degrees C and for 30 min at 45 degrees C. The glutamine pool decreased rapidly to 20% of its control value within 30 min at 40.5 degrees C with a T1/2 = 15 min. At 45 degrees C, the decrease was 36%. Thermotolerance developed at 40.5 degrees C with a T1/2 = 30 min; thus, glutamine depletion preceeds the development of thermotolerance. The depletion of glutamine is probably due to increased metabolism and oxidation of glutamine through the TCA cycle at hyperthermic temperatures. Glutamine, as is true for other amino acids, was shown to protect proteins from thermal inactivation and V79 cells from hyperthermic killing when added in excess (4-10 mM) to the medium during heat stress. However, the stability of the total amino acid pool during the development of thermotolerance indicates that resistance to heat does not result from the accumulation of amino acids which then protect against thermal damage. The effects of the large decrease in the glutamine pool are unknown, although glutamine depletion may act as a signal for part of the heat shock response.  相似文献   

3.
The levels of the endogenous amino acid pools in conidia, germinating conidia, and mycelia of wild-type Neurospora crassa were measured. Three different chromatographic procedures employing the amino acid analyzer were used to identify and quantitatively measure 28 different ninhydrin-positive compounds. All of the common amino acids were detected in conidial extracts except proline, methionine, and cystine. The levels of these three amino acid pools were also very low in mycelia. During the first hour of germination in minimal medium, the levels of most of the free amino acid pools decreased. The pool of glutamic acid, the predominant free amino acid in conidia, decreased 70% during the first hour. Very little glutamic acid or any other amino acid was excreted into the medium. During the first 20 min of germination, the decrease in the glutamic acid pool was nearly equivalent to the increase in the aspartic acid pool. The aspartic acid and lambda-aminobutyric acid pools were the only amino acid pools that increased to maximum levels within the first 20 min of germination and then decreased. It is proposed that an important metabolic event that occurs during the early stages of conidial germination is the production of reduced pyridine nucleotides. The degradation of the large glutamic acid pool existing in the conidia (2.5% of the conidial dry weight) could produce these reduced coenzymes.  相似文献   

4.
Studies on the Nitrogen Metabolism in Ectomycorrhizae   总被引:1,自引:0,他引:1  
Concentrations of free and bound amino acids were determined in 1) the mycorrhizal fungus Boletus variegatus Fr. 2) nonmycorrhizal root systems of aseptically grown Pinus sylvestris L. seedlings, and 3) mycorrhizal root systems of seedlings developed aseptically using the two symbionts. Arginine (total) was the major amino acid constituent in the mycelium of B. variegatus (18%–22%) during the exponential phase of growth. While 59%–86% of the available arginine was bound during the acceleration phase of growth, in the logarithmic phase 63%–75% was in the free pool. There were differences in the proportions between the individual amino acids in the bound fraction at different stages of growth suggesting production of diverse proteins. Twenty per cent of the amino acid content of uninfected P. sylvestris root systems was arginine. Infection of the root systems by the fungal symbiont did not result in an increase but a slight decrease in the free arginine content of the composite structure. Almost all other amino acids in the free pool were found in higher concentrations in the mycorrhizal root system. It is suggested that arginine synthesis in B. variegatus is repressed by the arginine available in the host. The mycorrhizal fungus possibly metabolizes the host arginine pool ultimately resulting in more efficient protein synthesis in both the partners.  相似文献   

5.
Little is known about homocysteine metabolism in intestine. To address this question, we investigated homocysteine metabolism under conditions of folate adequacy and folate deprivation in the Caco-2 cell line, a model of human intestinal mucosal cells. Caco-2 cells were cultured in media enriched with [3-(13)C]serine and [U-(13)C(5)]methionine tracers, and enrichments of intracellular free amino acid pools of these amino acids as well as homocysteine, cystathionine, and cysteine were measured by using gas chromatography/mass spectrometry. Homocysteine transsulfuration plus folate-dependent and total remethylation were quantified from these amino acid enrichments. Homocysteine remethylation accounted for 19% of the intracellular free methionine pool in cells cultured with supplemental folate, and nearly all one-carbon units used for remethylation originated from the three carbon of serine via folate-dependent remethylation. Labeling of cystathionine and cysteine indicated the presence of a complete transsulfuration pathway in Caco-2 cells, and this pathway produced 13% of the intracellular free cysteine pool. Appearance of labeled homocysteine and cystathionine in culture medium suggests export of these metabolites from intestinal cells. Remethylation was reduced by one-third in folate-restricted cell cultures (P < 0.001), and only approximately 50% of the one-carbon units used for remethylation originated from the three carbon of serine under these conditions. In conclusion, the three carbon of serine is the primary source of one-carbon units used for homocysteine remethylation in folate-supplemented Caco-2 cell cultures. Remethylation is reduced as a result of folate restriction in this mucosal cell model, and one-carbon sources other than the three carbon of serine contribute to remethylation under this condition.  相似文献   

6.
The effect of nitrogen source on the free and bound amino acids of mycelium of Phymatotrichum omnivorum (Shear) Dugg was investigated. The largest free amino acid pool was present in the natural medium and the smallest in the synthetic medium. Phymatotrichum omnivorum was able to utilize different nitrogen sources with the best growth occurring with NH4NO3. The ratio of glycine to alanine and aspartic to glutamic was around 0.25 in the free amino acid pool and around 1 in the bound amino acid pool. The free pool of glutamic acid ranged from 5.6 % to 27.2 % depending upon the nitrogen source in the media. The free pool of alanine ranged from 35.7 % to 17.2 % in relation to the nitrogen source. Most other amino acid ratios did not vary significantly between the free amino acids and the bound amino acids.  相似文献   

7.
Changes in amino acid permeation during sporulation   总被引:8,自引:6,他引:2       下载免费PDF全文
Changes in amino acid uptake in Bacillus licheniformis and in the amino acid pools of three Bacillus species were investigated, by use of cells from different stages of the life cycle. B. licheniformis contains catalytic uptake systems for all of the 10 amino acids studied. The apparent maximal velocities of uptake decreased during sporulation but did not fall below the range observed for other microorganisms. In sporulating cells, the apparent affinity constants of the uptake systems for individual amino acids remained about the same as in growing cells, i.e., from 2 x 10(-7)m to 7 x 10(-6)m, whereas, in some cases, the apparent maximal velocities decreased significantly. Because the velocity of uptake showed an atypical dependence on substrate concentration, it was postulated that these cells contain two or more uptake systems for each amino acid. Only one of these systems appeared to be operative at a substrate concentration below 10(-6)m. Working at these low substrate concentrations, catalytic activities producing a net efflux of amino acids were demonstrable in vegetative cells in the presence of chloramphenicol, but these exit systems were lost during sporulation. A pool formed by the addition of radioactive algal hydrolysate will exchange with the external medium in vegetative cells but not in sporulating cells. Glutamic acid and alanine comprise at least 60% of the amino acid pool of B. licheniformis A-5, B. subtilis 23, and B. cereus T during all stages of growth and sporulation. The concentrations of the other amino acids in the pool varied extensively, but reflected, in general, the amino acid turnover known to occur during sporulation.  相似文献   

8.
Glucose-limited and glucose-starved cultures of Trichoderma aureoviride were analyzed for the size and composition of the mycelial free amino acid pool. In glucoselimited mycelia the pool size increased as a function of the specific growth rate above a value of ca. 0.08 h-1 and this was due principally to increasing concentrations of alanine and glutamic acid. During glucose starvation, the net pool size decreased only by ca 20% although a transient elevation of free amino acids was observed, the latter being attributed to the turnover of mycelial proteins. The amino acid pool compositions were categorized according to their ionic nature and, although no particular group varied significantly in its percentage contribution to the total pool size of growing mycelia, the observed variations during starvation were mostly attributable to the basic and acidic amino acids. Comparisons are made of the results with those obtained for other species of filamentous fungi and some possible explanations for the observed variations are discussed.  相似文献   

9.
There are at least 2 amino pools for leucine and for valine in the soybean hypocotyl, a small protein precursor pool and a large inactive pool. The precursor pool decreased in size during incubation of excised hypocotyls presumably because the cotyledonary sources of amino acids had been removed. The precursor pool was subject to expansion by supplying the amino acid externally at high concentrations. After the transfer of tissue to unsupplemented media, the expanded pool was rapidly depleted.  相似文献   

10.
W A Emerson  S Kornfeld 《Biochemistry》1976,15(8):1697-1703
The major glycoprotein of the bovine erythrocyte membrane was purified by extraction of the ghosts with lithium 3,5-diiodosalicylate followed by phenol-water extraction and acidification. The glycoprotein contains 20% protein and 80% carbohydrate by weight and gives a single band on sodium dodecyl sulfate-polyacrylamide gels with an estimated molecular weight of 230000 daltons. The carbohydrate composition of the glycoprotein was determined to be (in residues relative to sialic acid): sialic acid, 1.0; fucose, less than 0.01; mannose, 0.1; galactose, 3.3; N-acetylgalactosamine, 0.9; and N-acetylglucosamine, 2.4. Pronase digestion of the isolated glycoprotein followed by Sephadex G-75 gel filtration resulted in the separation of a small pool of glycopeptides (pool III), which included all of the mannose-containing glycopeptides, from the bulk of the glycopeptide material which was in the void fractions of the column (pool I). Alkaline borohydride treatment released over 95% of the oligosaccharide units in pool I and approximately 30% of the oligosaccharide units in pool III. These oligosaccharides were isolated by gel filtration and ion-exchange chromatography. The oligosaccharides released from pool I had molecular weights of 1100-1400 daltons and contained sialic acid, galactose, and N-acetylglucosamine in molar ratios of 0.5-1:3:2 as well as a partial residue of N-acetylgalactosaminitol. The oligosaccharides released from pool III by alkali had molecular weights of 1300-1600 daltons and contained sialic acid, galactose, N-acetylglucosamine, N-acetylgalactosamine and N-ACETYLgalactosaminitol in molar ratios of 1-2:2:1:1:1. These data indicate that the majority of the oligosaccharide units of the bovine erythrocyte glycoprotein are linked O-glycosidically to the peptide backbone of the molecule.  相似文献   

11.
The pool of phenylalanine, tyrosine, and tryptophan is formed in Escherichia coli K-12 by a general aromatic transport system [Michaelis constant (K(m)) for each amino acid approximately 5 x 10(-7)m] and three further transport systems each specific for a single aromatic amino acid (K(m) for each amino acid approximately 2 x 10(-6)m, reference 3). When the external concentration of a particular aromatic amino acid is saturating for both classes of transport system, the free amino acid pool is supplied with external amino acid by both systems. Blocking the general transport system reduces the pool size by 80 to 90% but does not interfere with the supply of the amino acid to protein synthesis. If, however, the external concentration is too low to saturate specific transport, blocking general transport inhibits the incorporation of external amino acid into protein by about 75%. It is concluded that the amino acids transported by either class of transport system can be used for protein synthesis. Dilution of the external amino acid or deprivation of energy causes efflux of the aromatic pool. These results and rapid exchange observed between pool amino acid and external amino acids indicate that the aromatic pool circulates rapidly between the inside and the outside of the cell. Evidence is presented that this exchange is mediated by the aromatic transport systems. Mutation of aroP (a gene specifying general aromatic transport) inhibits exit and exchange of the small pool generated by specific transport. These findings are discussed and a simple physiological model of aromatic pool formation, and exchange, is proposed.  相似文献   

12.
Effect of amino acids on the nitrogenase system of Klebsiella pneumoniae   总被引:27,自引:19,他引:8  
Yoch, D. C. (South Dakota State University, Brookings), and R. M. Pengra. Effect of amino acids on the nitrogenase system of Klebsiella pneumoniae. J. Bacteriol. 92:618-622. 1966.-The effect of exogenous amino acids and the free amino acid pool on the synthesis of the nitrogenase system of Klebsiella pneumoniae M5al (formerly Aerobacter aerogenes M5al) was investigated. When an actively N(2)-fixing culture was used to inoculate a medium containing a limiting concentration of NH(4) (+), an induction lag period was observed. When either a single amino acid or a mixture of amino acids was substituted at the same nitrogen concentration, growth was uninterrupted by the induction period. It appears that a step or steps in the formation of the nitrogenase system are repressed by NH(4) (+) and are not affected by amino acid N. The amino acids, far from repressing formation of nitrogenase as does NH(4) (+), actually stimulate its formation. It appears that both free and amino nitrogen are used simultaneously. The amino acids that served concomitantly with N(2) as a source of nitrogen were: aspartic acid, serine, threonine, leucine, and histidine. Of these amino acids, it was shown that aspartic acid is readily taken up by the cells. Of the amino acids not serving as an immediate nitrogen source, isoleucine is not taken up by the cells. The free amino acid pool of the cells was measured at the onset and termination of the induction period. Ninhydrin-positive material in the amino acid pool was depleted by 35% during the induction period.  相似文献   

13.
Five amino acids are accumulated during vegetative growth of Neurospora crassa, particularly.during the prestationary growth phase. Alanine, glutamine, glutamate, arginine and ornithine.comprised over 80% of the total amino acid pool in the mycelium. Amino acid pools of different amino acid auxotrophs were followed during the partial transformation of a mycelial mat into an aerial mycelium. The mycelial mat under starvation and in direct contact with air rapidly formed aerial mycelium, which produced thereafter a burst of conidia. During this process,glutamine and alanine in the mycelial mat were consumed more rapidly than other amino acids;in the growing aerial mycelium, glutamate and glutamine were particularly accumulated. Of the amino acids that were initially accumulated in the mycelial mat, only a high glutamine pool was required for aerial mycelium growth induced by starvation. This requirement for glutamine could not be satisfied by a mixture of the amino compounds that are synthesized via glutamine amidotransferase reactions. It is proposed that glutamine serves as a nitrogen carrier from the mycelial mat to the growing aerial mycelium.  相似文献   

14.
S ummary . During exponential growth of Bacillus amyloliquefaciens in a maltose–L-amino acids medium at 30°, cellular protein, RNA and DNA increased in parallel. After the exponential phase, extracellular protein, including α-amylase, was secreted into the medium at a quarter of the maximum rate of total cellular protein synthesis. The free amino acid pool for protein and the 'nucleotide'pool for RNA both increased fourfold during the transition to the post-exponential phase to 4.0 and 1.6%, respectively, of the cellular dry weight. Subsequently, the nucleotide pool did not change significantly whilst the free amino acid pool was reduced to 2/3 of its maximum size. When post-exponential phase, exoprotein-secreting bacteria were transferred to fresh culture medium, growth was re-established and there was a 4–5 fold reduction in nucleotide pool size accompanied by a loss of exoenzyme-forming ability.  相似文献   

15.
The composition of the amino acid pool during spherulation was determined. It changes in size and in composition, the concentration of each amino acid behaving individually. The first response to the onset of spherulation either by starvation or osmotic shock (0.5 M mannitol) always is a decrease of the pool's size, which during further starvation expands for a short period and then decreases again. During development induces by mannitol in the presence of external amino acids, the pool size increases continuously after the initial depletion.As shown by radioactive labeling, amino acids were actively released from the plasmodium into a medium containing amino acids, but retained by the microplasmodia in an amino acid-free medium. The kinetics of the uptake of radioactive amino acids from the medium is biphasic, indicating the existence of multiple pools. Even after a labeling period of 8 h the amino acid pool is not yet in equilibrium with the medium. The possibility of a compartimentation of the pool was confirmed by density labeling of two different enzymes.Whereas the turnover of total protein is only very low during growth, it is rather high in spherulating microplasmodia. At least 70% of the originally existing protein is degraded during this development, while, simultaneously, at least 50% of the protein present after 24 h starvation is newly synthesized during that period.  相似文献   

16.
During the transition of tobacco (Nicotiana tabacum) pith tissue to callus tissue, there were changes in the composition of the soluble amino acid pools, in the distribution of amino acids between pool and protein, and in the synthesis, accumulation, and degradation of proteins. The size of the leucine pool decreased from 90 nanomoles per gram fresh weight in fresh pith to 20 nanomoles in 24-hour cultured pith, followed by a return to 90 nmoles in pith cultured longer than 5 days. The latter value is the same as that reported for exponentially growing callus cells. Many other pool amino acids changed as dramatically. However, they always approached callus levels after 5 days of culturing. The total amino acid content of pith tissue (the sum of both pool and protein) remained unchanged during culturing. The value for total amino acid content (34 to 42 nanomoles per gram fresh weight) was also similar to that found in callus. The distribution of amino acids between pool and protein did change during culturing. The transition of pith tissue with 88% of its total amino acids free in the soluble pool to callus with 92% of its amino acids in protein was further characterized by changes in protein metabolism. Both protein synthesis and accumulation increased over the first 50 hours in culture to a maximum rate of 45 milligrams protein synthesized gram protein−1 hour−1. After 50 hours in culture, the rate of protein accumulation decreased to equal the rate of fresh weight accumulation (10 mg g−1 hour−1). However, protein synthesis continued at a high rate for several days, suggesting protein degradation was turned on by this time. By 5 days protein synthesis had decreased to a rate similar to that of callus.  相似文献   

17.
We investigated whether the higher rate of amino acid incorporation into immature than into mature brain protein is due to (a) rapid growth, (b) a small rapidly metabolized protein pool, or (c) a higher turnover rate of most of the protein. We measured net growth and the incorporation of [14C]tyrosine or [14C]valine into brain proteins in young rats and mice. The specific activity of the free amino acid pool was kept constant in the tyrosine experiments. Incorporation of tyrosine into protein was continued for up to 30 h by which time the specific activity of protein-bound amino acid reached 1/3 of that of the free (precursor) amino acid. The growth (accretion) of brain proteins was approx. 0.635% per h in mice and rats in the 1-4 day period after birth. In previous studies we found that the turnover rate of the bulk (about 96%) of adult brain proteins is below 0.3% per h. Because of the presence of a small (about 4%) active pool the average turnover rate is 0.6% per h. The present experiments show a degradation rate of 0.7-1.1% per h in the brain proteins of the young. This high metabolic rate is not due to a small rapidly degraded fraction of protein. The very rapid protein fraction previously seen in adult rats is either very small (below 1%) or absent in the young. Thus most of the proteins in the immature brain during the rapid growth phase are formed and broken down at a rate that is approximately three times higher than that of the bulk of proteins in the adult brain. The small active protein pool in the adult on the other hand has a metabolic rate higher than that of the immature brain proteins.  相似文献   

18.
Wheat (Triticum aestivum L. var. Lew) embryonic axes take up externally supplied radioactive amino acid (from a solution greater than 2 millimolar) such that the specific radioactivity of the total internal amino acid rapidly reaches that of the external solution. Nevertheless, incorporation of radioactive amino acid into protein increases steadily as the concentration of external amino acid is increased, indicating that the amino acid that is precursor to protein synthesis is not in equilibrium with the total internal amino acid pool. When the external source of amino acid is removed, incorporation of radiolabeled amino acid into protein continues at a rate comparable to that of embryos maintained in the radioactive solution. In explanation of these data, it is suggested that there are two separate cytoplasmic pools of amino acids, one a protein synthesis precursor pool, and the second, an expandable pool into which exogenous radioactive amino acids are taken up. The protein synthesis pool is fed at a limited rate from the expandable pool and at a far greater rate from an endogenous source. As a consequence, the specific activity of the amino acid that is the precursor for protein synthesis is considerably below that of the total internal pool and is determined by the rate of movement into the protein synthesis pool from the expanded radioactive cytoplasmic pool.

The rate of movement of amino acids from the expandable pool into the protein synthesis pool increases approximately 5-fold during the initial 4.5 hours of embryo germination. When this change is considered in analyzing the relative rates of protein synthesis, there is probably no more than a 2-fold increase in protein synthetic capacity between embryos germinated for 1.5 and 4.5 hours. The leveling off of the change in transport capacity after 4.5 hours suggests that the earlier increase in the rate of this process may be a necessary step before the embryos can begin to accelerate their growth rate.

  相似文献   

19.
Changes in the endogenous intracellular amino acid pool and total free amino acid production in Bacillus licheniformis grown in minimal media were investigated. The total intracellular pool increased during exponential growth and then decreased rapidly after the end of growth. Most of the amino acids were present at low concentrations, but glutamate and alanine comprised 60 to 90% of the total intracellular free amino acid at most times during the growth cycle. It was concluded that, in addition to providing monomers for protein synthesis, the intracellular amino acid pool may be maintained for the storage of energy-providing metabolic intermediates and possibly as a balance to the ionic strength of the medium. The total free amino acid production by the cell was found to be dependent upon the composition of the salts medium as well as the culture age under conditions in which the carbon and nitrogen sources were the same. A 10-fold increase in extracellular amino acid was observed as the cells changed from vegetative to sporulation metabolism, mostly due to the extrusion of intracellular amino acid. The impact of this increase upon amino acid uptake and pulse-labeling studies using unwashed cells is discussed.  相似文献   

20.
After the dormancy of Saccharomyces cerevisiae ascospores had been broken, the synthesis of proteins was observed first, followed rapidly by synthesis of ribonucleic acid (RNA) and much later by deoxyribonucleic acid (DNA) synthesis. Phosphoglucomutase activity increased in a periodic (step) fashion, whereas the activity of five other enzymes increased linearly during germination and outgrowth. The rate of synthesis of these enzymes was highest at about the period of DNA replication. The amino acid pools of dormant spores contained high levels of proline, glutamic acid, and histidine. At 2 h after onset of germination, the pools of phenylalanine and methionine had disappeared and the other components had decreased significantly. By 3.5 h, with the exception of proline and cystine, most amino acid pool components had significantly increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号