首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: This study attempts to determine if the medial (MSO) and lateral superior olive (LSO), medial nucleus of the trapezoid body (MNTB), ventral nucleus of the lateral lemniscus (VNLL), and central nucleus of the inferior colliculus (ICc) contain glutamatergic synaptic endings. Micropunch and microdissection procedures provided fresh samples of these auditory nuclei for the measurement of the high-affinity uptake and electrically evoked release of exogenous d -[3H]ASP. The study also determined if the LSO and MSO contain glycinergic synaptic endings by measuring uptake and release of [14C]-Gly in these nuclei, and whether the MNTB, VNLL, and ICc contain GABAergic endings by assessing the uptake and release of [14C]GABA in these structures. Several strategies optimized the evoked Ca2+-dependent release of the labeled amino acids. These included the enhancement of high-affinity uptake during loading of the markers into the tissues, inhibition of uptake during the subsequent measurement of release, and use of an electrical stimulus current that evoked maximal Ca2+-dependent release. Each of these nuclei manifested the high-affinity uptake and the evoked Ca2+-dependent release of d -[3H]Asp, suggesting the presence of synaptic endings that may use Glu or Asp as a transmitter. Similar findings suggest the presence of glycinergic synaptic endings in the LSO and MSO, and of GABAergic synaptic endings in the MNTB, VNLL, and ICc.  相似文献   

2.
Abstract: The time course of Ca2+-dependent [3H]acetylcholine ([3H]ACh) release and inactivation of 45Ca2+ entry were examined in rat brain synaptosomes depolarized by 45 m M [K+]o. Under conditions where the intrasynaptosomal stores of releasable [3H]ACh were neither exhausted nor replenished in the course of stimulation, the K+-evoked release consisted of a major (40% of the releasable [3H]ACh pool), rapidly terminating phase ( t 1/2 = 17.8 s), and a subsequent, slow efflux that could be detected only during a prolonged, maintained depolarization. The time course of inactivation of K+-stimulated Ca2+ entry suggests the presence of fast-inactivating, slow-inactivating, and noninactivating, or very slowly inactivating, components. The fast-inactivating component of the K+-stimulated Ca2+ entry into synaptosomes appears to be responsible for the rapidly terminating phase of transmitter release during the first 60 s of K+ stimulus. The noninactivating Ca2+ entry may account for the slow phase of transmitter release. These results indicate that under conditions of maintained depolarization of synaptosomes by high [K+]o the time course and the amount of transmitter released may be a function of the kinetics of inactivation of the voltage-dependent Ca channels.  相似文献   

3.
Abstract: The effect of colchicine (0.5 mM) and of cytochalasin B (10−4 M) on the release of [35S]taurine from the isolated chick retina, upon stimulation by 68.5 mM-KCl, 10−5 M-veratridine and 10 mM-glutamate, was studied. Cytochalasin and colchicine effects on taurine release were compared with those on K+-stimulated release of [3H]dopamine and [3H]GABA. Colchicine caused a marked decrease of the [35S]taurine release evoked by the three stimulatory agents; it also decreased [3H]dopamine release without affecting that of [3H]GABA. Cytochalasin B significantly decreased the efflux of [35S]taurine stimulated by glutamate or veratridine without altering that evoked by 68.5 mM-KCl. Cytochalasin practically suppressed the [3H]dopamine-stimulated release and slightly decreased that of [3H]GABA. This drug produced a high increase in the spontaneous release of labeled GABA and taurine. These results suggest that the release of taurine and GABA from the chick retina probably occurs through different mechanisms. It is suggested that taurine release may be related to a process involving contractile proteins.  相似文献   

4.
Abstract: The ability of adenosine agonists to modulate K+-evoked 4D†-[3H]aminobutyric acid ([3H]GABA) and acetylcholine (ACh) release from rat striatal synaptosomes was investigated. The A2a receptor-selective agonist CGS 21680 inhibited Ca2+-dependent [3H]GABA release evoked by 15 m M KCI with a maximal inhibition of 29 ± 4% (IC50 of ∼4 ± 10 −12 M ). The relative order of potency of three agonists was CGS 21680 ± 5'- N -ethylcarboxamidoadenosine > R-phenylisopropyladenosine (R-PIA), with the inhibition being blocked by A2a receptor-selective antagonists (CP 66,713 and CGS 15943A) but not by the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). When release of [3H]GABA was evoked by 30 mM KCI, no significant inhibition was observed. In contrast, CGS 21680 stimulated the release of [3H]ACh evoked by 30 m M KCI, with a maximal stimulation of 26 ± 5% (IC50 of ∼10−11 M ). This effect was blocked by CP 66,713 but not by DPCPX. The A1 agonist R -PIA inhibited [3H]ACh release, an effect blocked by DPCPX. It is concluded that adenosine A2a receptors are present on both GABAergic and cholinergic striatal nerve terminals where they inhibit and stimulate transmitter release, respectively. Key Words : GABA—Acetylcholine—Adenosine receptors—Striatum.  相似文献   

5.
Abstract: The K+-induced release of amino acids and dopamine from synaptosomes of basal ganglia and substantia nigra of sheep was studied. K+ (56 mM) caused an increase in the release of GABA from caudate, putamen, globus pallidus, and substantia nigra, the increased release being 227, 171, 198, and 366%, respectively, compared with samples incubated without stimulation. The release of glutamate was also increased by 56 mM-K+ (136–183%) from all regions except the globus pallidus, and a significant release of aspartate was only seen in response to K+ stimulation of synaptosomes from putamen (50%). Veratrine (75 μM) also stimulated a similar pattern of amino acid release from these regions. Regional correlation was shown between the presence of an uptake system for an amino acid and its evoked release. [14C]Dopamine formed from L-[U-14C]tyrosine was released only from caudate and putamen synaptosomes by K+ stimulation, the increases being 105% and 74%, respectively. Synthesis of [14C]dopamine from L-[U-14C]tyrosine occurred only in synaptosomes prepared from these two regions and was not detected in synaptosomes from substantia nigra or globus pallidus although whole-tissue homogenates of substantia nigra were able to synthesise dopamine.  相似文献   

6.
Abstract: To test the hypothesis that a pool of newly synthesized acetylcholine (ACh) turns over independently of preformed ACh, compartmentation and K+ -evoked release of ACh were examined in perfused synaptosomal beds intermittently stimulated by 50 m M K+. In resting synaptosomes, endogenous and labeled ACh was distributed between synaptic vesicles and the cytoplasm in a dynamic equilibrium ratio of 4:6. In the absence of new ACh synthesis, five sequential K+ -depolarizations caused a decremental release of preformed labeled ACh totaling 30% of the initial transmitter store. Further depolarization evoked little additional release, despite the fact that 60% of the labeled ACh remained in these preparations. Release of the preformed [14C]ACh was unaltered while new ACh was being synthesized from exogenous [3H]choline. Since the evoked release of [3H]ACh was maintained while that of [14C]ACh was decreasing, the [3H]ACh/[14C]ACh ratio in perfusate increased with each successive depolarization. This ratio was six to ten times higher than the corresponding ratio in vesicles or cytoplasm. These results indicate that the newly synthesized ACh did not equilibrate with either the depot vesicular or cytoplasmic ACh pools prior to release.  相似文献   

7.
Abstract: The effect of tetanus toxin on the uptake and release of radiolabelled transmitters from slices prepared from substantia nigra (SN) and striatum of rats has been investigated. Tetanus toxin-500–750 mouse lethal doses (MLD)-injected into the SN 6 h before preparing the slices significantly reduced the calcium-dependent, potassium-evoked release of [3H]GABA. Endogenous GABA levels in the SN and [3H]GABA uptake by nigral slices were unaffected by pretreatment with the toxin. Injections of tetanus toxin (1000–2000 MLD) into the striatum significantly reduced the calcium-dependent, potassium-evoked release of [14C]GABA and also [3H]dopamine, but had no effect on the K+-evoked release of [3H]5-hydroxytryptamine or [14C]acetylcholine. It is concluded that tetanus toxin inhibits GABA release directly and not by interference with synthesis or inactivation processes.  相似文献   

8.
Abstract— 45Ca2+ uptake by cerebral cortex synaptosomes was determined by gel filtration, glass fibre disc filtration under suction and by centrifugation with EGTA present. The filtration methods gave comparable results which were higher than values obtained by the centrifugation method. Uptake was increased by 25mM-K+ at all times investigated. The accumulated 45Ca2+ was bound within the synaptosome. 45Ca2+-ionophore A23187 stimulated uptake only during the first min; levels of intra-synaptosomal 45Ca2+ then returned to control values. A23187 also increased intra-synaptosomal Na+ and Cl contents. Botulinum toxin inhibits the K.+-stimulated release of [14C]ACh from synaptosomes but the ionophore released [14C]ACh from both normal and botulinum-treated preparations in a Ca2+-dependent manner. However, it also elicited Ca2+-dependent release of [choline. Increased extracellular Ca2+ (10 mM and 20 mM) released [14C]ACh (but not [14C]choline) from both normal and botulinum-treated synaptosomes. It is concluded that botulinum toxin interferes with the provision of Ca2+ essential for the mechanism of ACh release.  相似文献   

9.
Glycine release from Y79 retinoblastoma cells   总被引:3,自引:3,他引:0  
Abstract: Glycine release, induced by a high concentration of potassium chloride (K+), was investigated in cultured human Y79 retinoblastoma cells. The cells were labeled by incubation with [2-3H]glycine prior to K+ depolarization. Depolarization with 55 m M K+ caused an immediate, Ca2+-dependent release of approximately 20% of the cellular radiolabeled glycine content. Chemical analysis of the intracellular free glycine content also showed that approximately 20%, 2.4 nmol/mg protein, was released after K+ depolarization. Glycine release from labeled Y79 cells was not stimulated by incubation with 55 mM choline chloride. Based on measurements with an amino acid analyzer, it is concluded that of the free amino acids contained in the Y79 cell, only glycine is specifically released into the extracellular fluid by K+ depolarization. Although the intracellular content of serine and glutamate decreased, these amino acids were not released from the cells. Further studies with [U-14C]serine suggest that serine is converted into glycine in Y79 cells. Veratridine also caused an immediate release of [2-3H]glycine from the cells, and this was blocked by tetrodotoxin. This suggests that the Y79 cells possess voltage-dependent Na+ channels. These results indicate that K + - and veratridine-stimulated glycine release occurs in Y79 retinoblastoma cells, providing additional evidence that this continuously cultured line may be a useful model for certain human retinal and central nervous system functions.  相似文献   

10.
Synthesis of Acetylcholine from Acetate in a Sympathetic Ganglion   总被引:10,自引:9,他引:1  
Abstract: The present experiments tested whether acetate plays a role in the provision of acetyl-CoA for acetylcholine synthesis in the cat's superior cervical ganglion. Labeled acetylcholine was identified in extracts of ganglia that had been perfused for 20 min with Krebs solution containing choline (10−5 M ) and [3H], [1-4C], or [2-14C]acetate (103 M ); perfusion for 60 min or with [3H]acetate (10−2 M ) increased the labeling. The acetylcholine synthesized from acetate was available for release by a Ca2+-dependent mechanism during subsequent periods of preganglionic nerve stimulation. When ganglia were stimulated via their preganglionic nerves or by exposure to 46 m M K+, the labeling of acetylcholine from [3H]acetate was reduced when compared with resting ganglia. The reduced synthesis of acetylcholine from acetate during stimulation was not due to acetate recapture, shunting of acetate into lipid synthesis, or the transmitter release process itself. In ganglia perfused with [2-14C]glucose, the amount of labeled acetylcholine formed was clearly enhanced during stimulation. An increase in acetylcholine labeling from [3H]acetate was shown during a 15-min resting period following a 60-min period of preganglionic nerve stimulation (20 Hz). It is concluded that acetate is not the main physiological acetyl precursor for acetylcholine synthesis in this sympathetic ganglion, and that during preganglionic nerve stimulation there is enhanced delivery of acetyl-CoA to choline acetyltransferase from a source other than acetate.  相似文献   

11.
Abstract: We attempt to provide evidence that the projection from the guinea pig auditory cortex (AC) to the inferior colliculus (IC) may contain glutamatergic or GABAergic fibers. Seven days after unilateral AC aspiration, histological studies indicated almost complete AC destruction and preterminal degeneration of fibers and terminal fields in the dorsal cortex (DCIC), external cortex (ECIC), and central nucleus (CNIC) of the IC ipsilateral to the ablated AC. Contralaterally, degeneration appeared in the DCIC. AC ablation depressed the electrically evoked Ca2+-dependent release of d -[3H]aspartate ( d -[3H]Asp) in the ipsilateral DCIC, ECIC, and CNIC, and d -[3H]Asp uptake in the CNIC. Together with other evidence that the corticocollicular pathway is excitatory, these findings suggest that this projection may contain glufamatergic and/or aspartatergic (Glu/Asp-ergic) fibers. Glutamic acid decarboxylase immunoreactivity was not apparent in presumed pyramidal cells of layer V of the AC retrogradely labeled with biotinylated dextran injected into the ipsilateral IC. Thus, corticocollicular neurons probably do not synthesize GABA and may not be GABAergic. However, AC ablation depressed [14C]GABA release from the ipsilateral DCIC and ECIC, and [14C]GABA uptake in the DCIC. These findings are consistent with the atrophy or down-regulation of some subcortical neurons that mediate GABAergic transmission in the IC.  相似文献   

12.
Abstract: Serotonin (5-hydroxytryptamine, 5-HT; 0.5 μM and above) stimulated the release of [3H]dopamine ([3H]DA) from particulate fractions of the carp ( Cyprinus carpio ) retina. The 5-HT effect was dose- and Ca2+-dependent, and was structurally specific. A similar response was not elicited by the other indoles (5,6-dihydroxytryptamine, 5,7-dihydroxytryptamine, 5-hydroxytrypto-phan, or 5-hydroxyindoleacetic acid) examined. An increase in [3H]DA release was elicited by addition of 5-HT agonists (5-methoxytryptamine, 5-methoxy- N,N- dimethyltryptamine, and tryptamine), but not antagonized by three 5-HT antagonists (metergolin, methysergide, and spiperone). Either DA alone or noradrenaline (0.5 m M ) produced a large increase in [3H]DA release from the particulate fractions, but this action was Ca2+-independent. Further, no significant release of [3H]γ-aminobutyric acid could be evoked by 5-HT (0.5 mM) under similar experimental conditions. Taken together, the present data suggest that 5-HT stimulates [3H]DA release from the fish retina through a specific receptor-mediated mechanism on dopaminergic terminals, but not through an exchange or nonspecific phenomenon.  相似文献   

13.
Abstract: We studied effects of Ca2+ in the incubation medium on [3H]dopamine ([3H]DA) uptake by rat striatal synaptosomes. Both the duration of the preincubation period with Ca2+ (0–30 min) and Ca2+ concentration (0–10 m M ) in Krebs-Ringer medium affected [3H]DA uptake by the synaptosomes. The increase was maximal at a concentration of 1 m M Ca2+ after a 10-min preincubation (2.4 times larger than the uptake measured without preincubation), which reflected an increase in V max of the [3H]DA uptake process. On the other hand, [3H]DA uptake decreased rapidly after addition of ionomycin in the presence of 1 m M Ca2+. The Ca2+-dependent enhancement of the uptake was still maintained after washing synaptosomes with Ca2+-free medium following preincubation with 1 m M Ca2+. Protein kinase C inhibitors did not affect apparently Ca2+-dependent enhancement of the uptake, whereas 1-[ N,O -bis(1,5-isoquinolinesulfonyl)- N -methyl- l -tyrosyl]-4-phenylpiperazine (KN-62; a Ca2+/calmodulin-dependent kinase II inhibitor) and wortmannin (a myosin light chain kinase inhibitor) significantly reduced it. Inhibitory effects of KN-62 and wortmannin appeared to be additive. N -(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7; a calmodulin antagonist) also remarkably inhibited the enhancement. These results suggest that Ca2+-dependent enhancement of [3H]DA uptake is mediated by activation of calmodulin-dependent protein kinases.  相似文献   

14.
Abstract: Ouabain, an Na+,K+-ATPase inhibitor, increases the release of acetylcholine (ACh) from various preparations in a Ca2+-independent way. However, in other preparations the release of ACh evoked by ouabain is dependent on the presence of extracellular calcium. In the present study, we have labeled the ACh of myenteric plexus longitudinal muscles of guinea pig ileum and compared the effect of calcium channel blockers on ouabain-evoked release of [3H]ACh. Release of [3H]ACh evoked by ouabain is dose dependent and decreased markedly in the absence of calcium or in the presence of cadmium, a nonspecific calcium channel blocker. N-type calcium channel blockage by the ω-conotoxins GVIA (selective N-type calcium channel blocker) and MVIIC (a nonselective calcium channel blocker) inhibited by 45 and 55%, respectively, the release of [3H]ACh. L-type calcium channel suppression by low concentrations of verapamil, nifedipine, and diltiazem had no effect on the release of [3H]ACh. The release of transmitter was also not affected significantly by nickel, a T-type calcium channel blocker. In addition, ω-agatoxin-IVA, at concentrations that block P- and Q-type calcium channels, did not affect significantly the release of [3H]ACh. Thus, extracellular Ca2+ is essential for the release of ACh induced by ouabain from guinea pig ileum myenteric plexus. In this preparation, the N-type calcium channel plays a dominant role in transmitter release evoked by inhibition of Na+,K+-ATPase, but other routes of calcium entry in addition to these channels can also support the release of neurotransmitter induced by ouabain.  相似文献   

15.
Abstract— Brain slices were incubated with [3H]GABA in a medium containing aminooxyacetic acid to prevent metabolism of [3H]GABA by GABA-glutamate transaminase. The slices, which rapidly accumulated radioactivity, were then continuously perfused and the efflux of [3H]GABA from the tissue was measured. The spontaneous efflux of [3H]GABA consisted of an initial rapid phase followed by a much slower release of [3[H]GABA. After 40 min perfusion 90 per cent of the radioactivity remained in the tissue.
The slices were depolarized by electrical stimulation or by perfusion with a medium containing a high potassium concentration (40 mM). These procedures caused a striking increase in the efflux of [3H]GABA. The increased efflux produced by potassium, but not that produced by electrical stimulation, was dependent on calcium ions in the medium. The effect of electrical stimulation on [3H]GABA release was considerably reduced by a raised concentration (10 mM) of magnesium in the medium.
High potassium concentrations and electrical stimulation did not cause an increase in the efflux of [14C]urea, L-[3H]leucine or [14C]α-amino-isobutyric acid from brain slices. These results are consistent with the suggestion that GABA may be an inhibitory transmitter in the cerebral cortex.  相似文献   

16.
Abstract— Mammalian cortical synaptosomes incubated in the presence of glucose (2.5 MM) plus glutamine (0.5 mM) showed a 30% increase in transmitter amino acid content over controls with glucose alone and a doubling of glutamate release induced by Veratrine or high K+. Double-label experiments, i.e. [U-14C]glucose with [3H]glutamine, and single-label experiments, i.e. [U-14C]glucose or [U-14C]-glutamine showed that stimulus-released glutamate was derived principally (80%) from glutamine. Released glutamine-derived glutamate was of higher (x 2) specific radioactivity than its tissue equivalent. Glutamine alone (0.5–0.75 mM) was much less effective than equivalent amounts of glucose alone, in stimulating respiration and maintaining tissue K+ levels.  相似文献   

17.
Abstract: We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 m M KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

18.
Abstract: Involvement of protein kinase C (PKC) in the release of γ-aminobutyric acid (GABA) was examined in Xenopus laevis oocytes injected with mRNA from rat cerebellum, as compared with findings in slices of rat cerebellum. The mRNA-injected oocytes preloaded with [3H]GABA showed spontaneous release of [3H]GABA, ∼0.5% of GABA content per 1 min. Stimulation with either Ca2+ ionophore (A23187) or a high K+ concentration increased the release of [3H]GABA from slices of rat deep cerebellar nucleus and mRNA-injected oocytes but not from noninjected and water-injected oocytes. 12- O -Tetradecanoylphorbol 13-acetate (10–300 n M ) but not 4α-phorbol 12,13-didecanoate (300 n M ) potentiated the A23187-stimulated release of [3H]GABA from slices and from mRNA-injected oocytes, in a concentration-dependent manner. Thus, machinery associated with release processes of GABA can be expressed in oocytes by injecting rat cerebellar mRNA, and PKC participates in GABA release from the functionally expressed GABAergic nerve terminals.  相似文献   

19.
Abstract— Desheathed rat dorsal root ganglia were incubated in a medium containing amino-oxyacetic acid and [3H]GABA. Under these conditions, [3H]GABA is taken up exclusively by the satellite glial cells in the ganglia. Efflux of [3H]GABA from the tissue was measured after passing the ganglia through a series of wash solutions. The spontaneous efflux of radioactivity, mostly [3H]GABA, was more rapid in the absence of amino-oxyacetic acid in the incubation and wash media.
Raising the potassium concentration in the wash media caused an increase in the efflux of [3H]GABA. This increase was sigmoidally related to the potassium concentration in the wash media, reaching a maximum at 64 m m -K+. The releasing effect of K+ was inhibited by removing calcium from the media. Reducing the calcium and raising the magnesium concentration in the wash solutions inhibited the increased efflux of [3H]GABA due to 64 m m -K+ by 48 per cent, while 5 mM-La3+ and diphenylhydantoin (0·005 and 0·5 m m ) had no effect on this increase.
Only a small increase in the efflux of [14C]glutamate was produced by 64 m m -K+ and it had no effect upon the effluxes of [3H]glycine, [3H]alanine or [3H]leucine. The efflux of lactate dehydrogenase was similarly unaffected by 64 mM-K+. The results suggest that glial cells in spinal ganglia can respond to depolarizing concentrations of potassium by releasing GABA in a calcium-dependent process.  相似文献   

20.
The role of l -aspartate as a classical neurotransmitter of the CNS has been a matter of great debate. In this study, we have characterized the main mechanisms of its depolarization-induced release from rat purified cerebrocortical synaptosomes in superfusion and compared them with those of the well-known excitatory neurotransmitter l -glutamate. High KCl and 4-aminopyridine were used as depolarizing agents. At 15 mM KCl, the overflows of both transmitters were almost completely dependent on external Ca2+. At 35 and 50 mM KCl, the overflows of l -aspartate, but not those of l -glutamate, became sensitive to dl -threo-β-benzyloxyaspartic acid ( dl -TBOA), an excitatory amino acid transporter inhibitor. In the presence of dl -TBOA, the 50 mM KCl-evoked release of l -aspartate was still largely external Ca2+-dependent. The dl -TBOA insensitive, external Ca2+-independent component of the 50 mM KCl-evoked overflows of l -aspartate and l -glutamate was significantly decreased by the mitochondrial Na+/Ca2+ exchanger blocker CGP 37157. The Ca2+-dependent, KCl-evoked overflows of l -aspartate and l -glutamate were diminished by botulinum neurotoxin C, although to a significantly different extent. The 4-aminopyridine-induced l -aspartate and l -glutamate release was completely external Ca2+-dependent and never affected by dl -TBOA. Superimposable results have been obtained by pre-labeling synaptosomes with [3H] d -aspartate and [3H] l -glutamate. Therefore, our data showing that l -aspartate is released from nerve terminals by calcium-dependent, exocytotic mechanisms support the neurotransmitter role of this amino acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号