首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Lymphoma induction and T-cell transformation by herpesvirus saimiri strain C488 depends on two viral oncoproteins, StpC and Tip. The major interaction partner of Tip is the protein tyrosine kinase Lck, a key regulator of T-cell activation. The Lck binding domain (LBD) of Tip comprises two interaction motifs, a proline-rich SH3 domain-binding sequence (SH3B) and a region with homology to the C terminus of Src family kinase domains (CSKH). In addition, biophysical binding analyses with purified Lck-SH2 domain suggest the phosphorylated tyrosine residue 127 of Tip (pY127) as a potential third Lck interaction site. Here, we addressed the relevance of the individual binding motifs, SH3B, CSKH, and pY127, for Tip-Lck interaction and for human T-cell transformation. Both motifs within the LBD displayed Lck binding activities and cooperated to achieve a highly efficient interaction, while pY127, the major tyrosine phosphorylation site of Tip, did not enhance Lck binding in T cells. Herpesvirus saimiri strain C488 recombinants lacking one or both LBD motifs of Tip lost their transforming potential on human cord blood lymphocytes. Recombinant virus expressing Tip with a mutation at position Y127 was still able to transform human T lymphocytes but, in contrast to wild-type virus, was strictly dependent on exogenous interleukin-2. Thus, the strong Lck binding mediated by cooperation of both LBD motifs was essential for the transformation of human T cells by herpesvirus saimiri C488. The major tyrosine phosphorylation site Y127 of Tip was particularly required for transformation in the absence of exogenous interleukin-2, suggesting its involvement in cytokine signaling pathways.  相似文献   

2.
3.
4.
Herpesvirus saimiri is capable of transforming T lymphocytes of various primate species to stable growth in culture. The interaction of the T-cellular tyrosine kinase p56(lck) with the transformation-associated viral protein Tip has been shown before to activate the kinase and provides one model for the T-cell-specific transformation by herpesvirus saimiri subgroup C strains. In contrast to other primate species, squirrel monkeys (Saimiri sciureus) are naturally infected with the virus without signs of lymphoma or other disease. Although the endogenous virus was regularly recovered from peripheral blood cells from squirrel monkeys, we observed that the T cells lost the virus genomes in culture. Superinfection with virus strain C488 did not induce growth transformation, in contrast to parallel experiments with T cells of other primate species. Surprisingly, p56(lck) was enzymatically inactive in primary T-cell lines derived from different squirrel monkeys, although the T cells reacted appropriately to stimulatory signals. The cDNA sequence revealed minor point mutations only, and transfections in COS-7 cells demonstrated that the S. sciureus lck gene codes for a functional enzyme. In S. sciureus, the tyrosine kinase p56(lck) was not activated after T-cell stimulation and enzymatic activity could not be induced by Tip of herpesvirus saimiri C488. However, the suppression of p56(lck) was partially released after administration of the phosphatase inhibitor pervanadate. This argues for unique species-specific conditions in T cells of S. sciureus which may interfere with the transforming activity and pathogenicity of herpesvirus saimiri subgroup C strains in their natural host.  相似文献   

5.
6.
7.
Herpesvirus saimiri group C strains are capable of transforming human and simian T-lymphocyte populations to permanent antigen-independent growth. Two viral oncoproteins, StpC and Tip, that are encoded by a single bicistronic mRNA, act in concert to mediate this phenotype. A closely related New World monkey herpesvirus, herpesvirus ateles, transcribes a single spliced mRNA at an equivalent genome locus. The encoded protein, Tio, has sequence homologies to both StpC and Tip. We inserted the tio sequence of herpesvirus ateles strain 73 into a recombinant herpesvirus saimiri C488 lacking its own stpC/tip oncogene. Simian as well as human T lymphocytes were growth transformed by the chimeric Tio-expressing viruses. Thus, a single herpesvirus protein appears to be responsible for the oncogenic effects of herpesvirus ateles.  相似文献   

8.
9.
Herpesvirus saimiri is a primate tumor virus that induces acute T-cell lymphomas in New World monkeys. Strains of this virus have been previously classified into three groups on the basis of extreme DNA variability of the rightmost region of unique L-DNA. To compare the oncogenic potentials of various strains, we inoculated New Zealand White rabbits with viruses representing groups A, B, and C of herpesvirus saimiri. The results showed that a group C strain were highly oncogenic in New Zealand White rabbits; however, group A or B viruses were not oncogenic in these rabbits. Analysis of DNAs of tumor tissues and lymphoid cell lines established from tumors showed that the viral genome exists in circular episomal form. To identify which part of the genome of the group C strain is responsible for the highly oncogenic phenotype, group B-C recombinant strains were constructed by an efficient drug selection technique. Two group B recombinant strains in which the right-end 9.2 kilobase pairs of unique DNA is replaced by group C virus DNA were oncogenic in rabbits, indicating that the rightmost sequences contribute to the oncogenic properties of the group C strain. Oncogenicity of herpesvirus saimiri has been traditionally evaluated in New World monkeys; infection of rabbits with group C strain 484-77 offers a much more accessible animal model to study the mechanism of oncogenicity of this virus.  相似文献   

10.
Tyrosine kinase interacting protein (Tip) of Herpesvirus saimiri (HVS) activates the lymphoid-specific member of the Src family kinase Lck. The Tip:Lck interaction is essential for transformation and oncogenesis in HVS-infected cells. As there are no structural data for Tip, hydrogen-exchange mass spectrometry was used to investigate the conformation of a nearly full-length form (residues 1-187) of Tip from HVS strain C484. Disorder predictions suggested that Tip would be mostly unstructured, so great care was taken to ascertain whether recombinant Tip was functional. Circular dichroism and gel-filtration analysis indicated an extended, unstructured protein. In vitro and in vivo binding and kinase assays confirmed that purified, recombinant Tip interacted with Lck, was capable of activating Lck kinase activity strongly and was multiply phosphorylated by Lck. Hydrogen-exchange mass spectrometry of Tip then showed that the majority of backbone amide hydrogen atoms became deuterated after only 10 s of labeling. Such a result suggested that Tip was almost totally unstructured in solution. Digestion of deuterium-labeled Tip revealed some regions with minor protection from exchange. Overall, it was found that, although recombinant Tip is still functional and capable of binding and activating its target Lck, it is largely unstructured.  相似文献   

11.
Herpesvirus ateles is a gamma-2-herpesvirus which naturally infects spider monkeys (Ateles spp.) and causes malignant lymphoproliferative disorders in various other New World primates. The genomic sequence of herpesvirus ateles strain 73 revealed a close relationship to herpesvirus saimiri, with a high degree of variability within the left terminus of the coding region. A spliced mRNA transcribed from this region was detected in New World monkey T-cell lines transformed by herpesvirus ateles in vitro or derived from T cells of infected Saguinus oedipus. The encoded viral protein, termed Tio, shows restricted homology to the oncoprotein StpC and to the tyrosine kinase-interacting protein Tip, two gene products responsible for the T-cell-transforming and oncogenic phenotype of herpesvirus saimiri group C strains. Tio was detectable in lysates of the transformed T lymphocytes. Dimer formation was observed after expression of recombinant Tio. After cotransfection, Tio was phosphorylated in vivo by the protein tyrosine kinases Lck and Src and less efficiently by Fyn. Stable complexes of these Src family kinases with the viral protein were detected in lysates of the transfected cells. Binding analyses indicated a direct interaction of Tio with the SH3 domains of Lyn, Hck, Lck, Src, Fyn, and Yes. In addition, tyrosine-phosphorylated Tio bound to the SH2 domains of Lck, Src, or Fyn. Thus, herpesvirus ateles-encoded Tio may contribute to viral T-cell transformation by influencing the function of Src family kinases.  相似文献   

12.
Protein tyrosine kinases (PTKs) are critically involved in signaling pathways that regulate cell growth, differentiation, activation, and transformation. It is not surprising, therefore, that viruses acquire effector molecules targeting these kinases to ensure their own replication and/or persistence. This review summarizes our current knowledge on Lck, a member of the Src family of PTK, and its viral interaction partners. Lck plays a key role in T lymphocyte activation and differentiation. It is associated with a variety of cell surface receptors and is critical for signal transduction from the T-cell antigen receptor (TCR). Consequently, Lck is targeted by regulatory proteins of T-lymphotropic viruses, especially by the Herpesvirus saimiri (HVS) tyrosine kinase interacting protein (Tip). This oncoprotein physically interacts with Lck in HVS transformed T cells and has an impact on its catalytic activity. However, while Tip inhibits Lck activity in stably expressing cell lines, opposite effects were observed in several in vitro systems. At least in part, this complex situation may be related to the bipartite nature of the interaction surface of the two proteins. Studies on the interrelationships between Lck and its viral partners contribute to the understanding of the mechanisms of T-cell growth regulation, in general, and of viral pathogenicity in particular. In addition, understanding the regulation of Lck activity by viral proteins may serve as a basis for the development of new drugs capable of modifying Lck activity in different pathological situations.  相似文献   

13.
Human T cells are transformed to antigen-independent permanent growth in vitro upon infection with herpesvirus saimiri subgroup C strains. The viral oncoproteins required for this process, StpC and Tip, could be replaced by Tio, the oncoprotein of herpesvirus ateles. Here we demonstrate that proliferation of lymphocytes transformed with Tio-recombinant herpesvirus saimiri required the activity of Src family kinases. Src kinases had previously been identified as interaction partners of Tio. This interaction was now shown to be independent of any of the four tyrosine residues of Tio but to be dependent on an SH3-binding motif. Mutations within this motif abrogated the transforming capabilities of Tio-recombinant herpesvirus saimiri. Furthermore, kinase interaction resulted in the phosphorylation of Tio on a single tyrosine residue at position 136. Mutation of this residue in the viral context revealed that this phosphorylation site, but none of the other tyrosine residues, was required for T-cell transformation. These data indicate that the interaction of Tio with a Src kinase is essential for both the initiation and the maintenance of T-cell transformation by recombinant herpesvirus saimiri. The requirement for the tyrosine phosphorylation site at position 136 suggests a role for Tio beyond simple deregulation of the kinase.  相似文献   

14.
Herpesvirus saimiri encodes a tyrosine kinase interacting protein (Tip) that binds to T-cell-specific tyrosine kinase Lck via multiple sequence motifs and controls its activity. The regulation of Lck by Tip represents a key mechanism in the transformation of human T-lymphocytes during herpesviral infection. In this study, the interaction of Tip with the regulatory SH3 and SH2 domains of Lck was investigated by biophysical and computational techniques. NMR spectroscopy of isotopically labeled Tip(140-191) revealed that the interaction with the LckSH3 domain is not restricted to the classical proline-rich motif, but also involves the C-terminally adjacent residues which pack into a hydrophobic pocket on the surface of the SH3 domain, thus playing a likely role in mediating binding specificity. Fluorescence binding studies of Tip further demonstrate that Tyr127 in its phosphorylated form represents a strong ligand of the LckSH2 domain, indicating the presence of an additional Lck interaction motif. In contrast, Tyr114, known to be essential for STAT-3 binding, does not interact with the LckSH2 domain, showing that the tyrosines in Tip exhibit distinct binding specificity. The existence of numerous interaction sites between Tip and the regulatory domains of Lck implies a complex regulatory mechanism and may have evolved to allow a gradual regulation of Lck activity in different pathogenic states.  相似文献   

15.
16.
Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip) of T lymphotropic Herpesvirus saimiri (HVS) is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip''s transmembrane (TM) domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip''s lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.  相似文献   

17.
Previously, it has been shown that E mu-pim-1 transgenic mice are predisposed to T-cell lymphomas, whereas E mu-myc transgenic mice are predisposed to pre-B-cell lymphomas. Here we show that double-transgenic E mu-myc E mu-pim-1 mice exhibit pre-B-cell leukemia in utero. Upon transplantation into recipient mice, embryo-derived double-transgenic leukemic cells frequently progressed to highly malignant monoclonal tumors, indicating that additional (epi)genetic events had occurred during the progression of the disease.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号