首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

The partitioning of the total soil CO2 efflux into its two main components: respiration from roots (and root-associated organisms) and microbial respiration (by means of soil organic matter (SOM) and litter decomposition), is a major need in soil carbon dynamics studies in order to understand if a soil is a net sink or source of carbon.

Methods

The heterotrophic component of the CO2 efflux was estimated for 11 forest sites as the ratio between the carbon stocks of different SOM pools and previously published (Δ14C derived) turnover times. The autotrophic component, including root and root-associated respiration, was calculated by subtracting the heterotrophic component from total soil chamber measured CO2 efflux.

Results

Results suggested that, on average, 50.4 % of total soil CO2 efflux was derived from the respiration of the living roots, 42.4 % from decomposition of the litter layers and less than 10 % from decomposition of belowground SOM.

Conclusions

The Δ14C method proved to be an efficient tool by which to partition soil CO2 efflux and quantify the contribution of the different components of soil respiration. However the average calculated heterotrophic respiration was statistically lower compared with two previous studies dealing with soil CO2 efflux partitioning (one performed in the same study area; the other a meta-analysis of soil respiration partitioning). These differences were probably due to the heterogeneity of the SOM fraction and to a sub-optimal choice of the litter sampling period.  相似文献   

2.
The effects of anticoagulant EDTA and sodium heparin (SH) on stable carbon δ13C and nitrogen δ15N isotopic values of red blood cells (RBC) and blood plasma in juvenile blacktip reef sharks Carcharhinus melanopterus were analysed. Plasma preserved with anticoagulants was not isotopically distinct from plasma stored in no-additive control tubes but RBC δ15N values exhibited small enrichments when preserved with EDTA and SH. Results suggest EDTA and SH are viable anticoagulants for stable isotopic analyses of blood fractions but further studies are advised to validate results.  相似文献   

3.
Zebra mussels (Dreissena polymorpha) can be used to provide a baseline stable isotope signature, time-integrated with primary production. However, since zebra mussels are uncommon in pelagic zones, their potential as reference species in pelagic water columns has not been fully explored. By investigating mussels growing suspended on a single vertical cable in Lake Constance, we were able to document seasonal (April, May, and August) and depth-dependent (0–22 m) variation in mussel δ 15Ν and δ 13C. We found a strong correlation between temperature and mussel δ 15N from differing depths; and a strong relationship between temperature and Δ15Ν (estimated as δ 15Νmussel ? δ 15ΝPOM) and Δ13C (δ 13Cmussel ? δ 13CPOM). In a pattern that remained consistent over all months, Δ15Ν decreased with temperature, to the extent that negative values were recorded at temperatures >13°C. Utilizing cable-dwelling pelagic mussels as indicators of variation in isotope and temperature for pelagic water could be used as a novel field approach, comparable to in situ experimentation. We suggest that the pelagic mussel approach can be employed in tandem with benthic or littoral mussel isotope values, to develop mussel-based lake isoscapes. Such isoscapes may be pertinent to the study of seasonal trophic limnoecology and in tracking the movements of animals.  相似文献   

4.
5.
The extent of transfer of fixed N between N2-fixing and non-N2-fixing plant species is largely unknown in successional studies. In order to redress this deficiency at a locale intensively studied ecologically, leaf tissue samples were collected from actinorhizal N2-fixing (Alnus, Shepherdia, and Dryas) and two non-N2-fixing (Salix) woody species within research plots located along a chronosequence of deglaciated fjord in Glacier Bay National Park, Alaska. The tissue samples were analyzed for 15N content, and the resulting data analyzed for trends in plant tissue N. Among the non-N2-fixing Salix species, 15N values increased from the most recently deglaciated sites to converge with the temporally more-stable values for the symbiotic N2-fixing species on sites at about 40 years after deglaciation. The lower 15N values of sequestered N in plant tissues suggested that N derived from N2-fixing plants accounts for the major portion of N in associated plants up to 40 years after deglaciation. The 15N isotopic data also suggested that Shepherdia canadensis depends least on soil N, D. drummondii the most, and A. viridis ssp. sinuata somewhere between those two species. The presence of a sere dominated by dense thickets of A. viridis ssp. sinuata at the convergence of 15N values for the N2-fixing and non-N2-fixing species indicated that this species is most responsible for accumulation of fixed N in soil at Glacier Bay. This paper is dedicated to the memory of Steven J. Kohls who died prior to publication of this research.  相似文献   

6.
7.
We examined the effects of fertilizer application, especially the effects of fertigation and types of fertilizer (inorganic and organic) on yields and 15N and 13C values of tomato (Lycopersicon esculentum Mill. cv. Saturn). Fertigation is a method in which an appropriate diluted liquid fertilizer is applied to the plants each time they are drip-irrigated. We developed a method of organic fertigation using corn steep liquor (CSL) as the liquid fertilizer, because it is an industrial byproduct of cornstarch manufacture and can be used very effectively. We compared fruit yield, mineral content, 15N value, and 13C value of tomatoes grown under three different fertilizer treatments, basal dressing: basal dressing with granular chemical fertilizer; inorganic fertigation: fertigation with liquid chemical fertilizer; and organic fertigation: fertigaion with CSL. Mineral contents of tomatoes grown with basal dressing were generally lower than those grown under either fertigation treatment. These results indicated that yields and mineral contents were influenced more by the method of fertilizer application than by whether the fertilizers were inorganic or organic. There were, however, significant differences in the 15N values of tomato fruits grown under different types of fertilizer applications, especially between inorganic and organic fertilizers. The 15N value of the chemical fertilizer used for basal dressing was 0.81 ± 0.45{}, that of the chemical fertilizer for fertigation was 0.00 ± 0.04{}, and that of CSL was 8.50 ± 0.71{}. The 15N values of the soils reflected the 15N values of the fertilizers. Moreover, the 15N values of the fruits corresponded to the 15N values of the applied fertilizers. The 15N values were 3.18 ± 1.34{} in the fruits grown with a basal dressing of chemical fertilizer, 0.30 ± 0.61 in those grown under inorganic fertigation, and 7.09 ± 0.68 in those grown under organic fertigation. On the other hand, although the 13C values in the soil also reflected the 13C values of the applied fertilizers, there was no significant difference in the 13C values of fruits among the different treatments. In conclusion, because the 15N values of fertilizers correlated well with those of the fruits, it may be possible to use 15N values as an indicator of organic products.  相似文献   

8.
9.
HNCO-based 3D pulse schemes are presented for measuring 1HN-15N,15N-13CO, 1HN-13CO,13CO-13C and 1HN-13C dipolar couplings in 15N,13C,2-labeled proteins. The experiments are based on recently developed TROSY methodology for improving spectral resolution and sensitivity. Data sets recorded on a complex of Val, Leu, Ile (1 only) methyl protonated 15N,13C,2H-labeled maltose binding protein and -cyclodextrin as well as 15N,13C,2H-labeled human carbonic anhydrase II demonstrate that precise dipolar couplings can be obtained on proteins in the 30–40 kDa molecular weight range. These couplings will serve as powerful restraints for obtaining global folds of highly deuterated proteins.  相似文献   

10.
Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.  相似文献   

11.
Schneider  Florian  Amelung  Wulf  Don  Axel 《Plant and Soil》2021,460(1-2):123-148
Plant and Soil - Agricultural soils in Germany store 2.54 Pg of organic carbon (C). However, information about how and when this C entered the soils is limited. This study illustrates how depth...  相似文献   

12.
13.
Estuarine ecosystems are easily deteriorated by organic pollution because of its high primary productivity. To identify chemical proxies for the possible sources of autochthonous organic matter [phytoplankton-derived particulate organic material (POM), macroalgae and seagrass], we measured C:N:P and the ratios of carbon and nitrogen stable isotopes (δ13C and δ15N values) in two estuarine environments, the polyhaline lagoon, Lake Nakaumi, and the oligohaline lagoon, Lake Shinji, in Japan. Due to vigorous photosynthesis, the δ13C of phytoplankton-derived POM in Lake Nakaumi was larger than what would normally be expected from estuarine salinity gradients. Concentrations of nitrogen and phosphorus did not affect the δ13C of phytoplankton-derived POM. The δ15N of all plants was uniform and was higher than the δ15N of sediments. The seagrass showed a higher C:N ratio than POM and macroalgae, while the macroalgae showed a higher N:P ratio. Thus, simultaneous evaluation of C:N and N:P ratios would distinguish these three plant groups, and it would be possible to identify the source plants from the elemental ratios of the sediments.  相似文献   

14.
Isotopic labelling experiments were conducted to assess relationships among 13C of recently assimilated carbon ( δC A), foliage respiration ( δC F), soluble carbohydrate ( δC SC), leaf waxes ( δC LW) and bulk organic matter ( δC OM). Slash pine, sweetgum and maize were grown under 13C depleted CO2 to label biomass and then placed under ambient conditions to monitor the loss of label. In pine and sweetgum, δC F of labelled plants (∼−44 and −35‰, respectively) rapidly approached control values but remained depleted by ∼4–6‰ after 3–4 months. For these tree species, no or minimal label was lost from δC SC, δC LW and δC OM during the observation periods. δC F and δC SC of labelled maize plants rapidly changed and were indistinguishable from controls after 1 month, while δC LW and δC OM more slowly approached control values and remained depleted by 2–6‰. Changes in δC F in slash pine and sweetgum fit a two-pool exponential model, with the fast turnover metabolic pool (∼3–4 d half-life) constituting only 1–2% of the total. In maize, change in δC F fits a single pool model with a half-life of 6.4 d. The 13C of foliage respiration and biochemical pools reflect temporally integrated values of δC A, with change in isotopic composition dampened by the size of metabolic carbon reserves and turnover rates.  相似文献   

15.
Wiemken  V.  Ineichen  K.  Boller  T. 《Plant and Soil》2001,234(1):99-108
To study responses of forests to global change, model ecosystems consisting of beech and spruce trees were established in open top chambers. The ecosystems were exposed to four conditions for 4 years, each replicated four times: ambient and elevated CO2, and low and high nitrogen input. At the end of the trial, the trees were 6–8 years old. Each chamber contained two separate compartments with siliceous and calcareous soil. Here, we focus on the development of ectomycorrhizas in the topsoil layer. Ectomycorrhizal fungal biomass associated with the fine roots, estimated by using ergosterol content as a marker, was much higher in the siliceous compared to the richer calcareous soil. Also, in root-free soil samples, the level of ergosterol, indicative of the extraradical mycelium of ectomycorrhizal fungi as well as the mycelium of other fungi, was about six times higher in the siliceous than in the calcareous soil. Conditions of elevated atmospheric CO2 primarily affected ectomycorrhizas in the calcareous soil. Fungal biomass, calculated per soil volume of the top soil layer, increased significantly, as did the metabolic activity of the ectomycorrhizal fungi, measured as uptake of glucose and synthesis of trehalose. Conditions of nitrogen fertilization affected ectomycorrhizas in the siliceous, nutrient poor soil.  相似文献   

16.
Matsushima  Miwa  Choi  Woo-Jung  Chang  Scott X. 《Plant and Soil》2012,359(1-2):375-385
Background and Aims

Phosphorus (P) mineralisation from crop residues is usually predicted from total P or carbon: phosphorus (C: P) ratios. However, these measures have limited accuracy as they do not take into account the presence of different P species that may be mineralised at different rates. In this study P speciation was determined using solution 31P nuclear magnetic resonance (NMR) spectroscopy to understand the potential fate of residue P in soils.

Methods

Mature above-ground biomass of eight different crops sampled from the field was portioned into stem, chaff and seed.

Results

The main forms of P detected in stem and chaff were orthophosphate (25–75 %), phospholipids (10–40 %) and RNA (5–30 %). Phytate was the dominant P species in seeds, and constituted up to 45 % of total P in chaff but was only detected in minor amounts (<1 %) in stem residue. The majority (65–95 %) of P in stems was water-extractable, and most of this was detected as orthophosphate. However, this includes organic P that may have been hydrolysed during the water extraction.

Conclusions

This study indicates that the majority of residue P in aboveground plant residues has the potential to be delivered to soil in a form readily available to plants and soil microorganisms.

  相似文献   

17.
18.
Organic carbon and nitrogen isotope values (δ13C, δ15N) and C/N ratios of six sediment cores from six coastal lagoons (including the Oder Estuary) were measured to chart the coastal development and to reconstruct the local palaeoenvironments of the southern Baltic Sea region during the Holocene. In addition, δ13C, δ15N and C/N values of major organic matter sources in the coastal lagoons and their drainage areas are investigated to determine the origin of organic matter (i.e. terrigenous or marine) in the sediments: plankton, aquatic macrophytes, typical C3 shore plants and peat. The δ13C, δ15N and C/N values of the samples collected show the clearly identifiable stages in the development of the water bodies: post-glacial lake stages with sandy sedimentation, lacustrine phases with high autochthonous productivity, terrestrial stages with peat formation, sedimentation as a result of marine transgression, and brackish sedimentation after the formation of sand spits and barrier islands. These stages are the results of sea level changes in the region. The values allow derivation of differences in the palaeoenvironments of the lagoons in the study area. A distinct terrestrial input is evident in the sediments of the lagoonal Oder Estuary, which can be attributed to the direct inflow of the Oder River into the lagoon. The isotope and C/N values also suggest a contribution of C4 plant detritus for the water bodies in the northeastern part of the study area (Barther Bodden, Grabow). The burial of autochthonous organic matter (i.e. plankton, aquatic macrophytes) in the sediment could be derived for all lagoons in this investigation.  相似文献   

19.
The effect of increased salinity on photosynthesis was studied in leaves of Plantago maritima L. that developed while plants were at low and high NaCl levels. In leaves that developed while plants were grown at 50 mol·m-3, exposure to 200 and 350 mol·m-3 NaCl resulted in reductions in net CO2 assimilation and stomatal conductance. The decline in CO2 assimilation in plants at 200 and 350 mol·m-3 NaCl occurred almost exclusively at high intercellular CO2 concentrations. The initial slope of the CO2 assimilation-intercellular CO2 (A-C i) curve, determined after salinity was increased, was identical or very similar to that measured initially. In contrast to the reductions observed in CO2 assimilation, there were no significant differences in O2 evolution rates measured at 5% CO2 among leaves from plants exposed to higher salinity and plants remaining at low salinity.Leaves that developed while plants were at increased salinity levels also had significantly lower net CO2 assimilation rates than plants remaining at 50 mol·m-3 NaCl. The lower CO2 assimilation rates in plants grown at 200 and 350 mol·m-3 NaCl were a result of reduced stomatal conductance and low intercellular CO2 concentration. There were no significant differences among treatments for O2 evolution rates measured at high CO2 levels. The increased stomatal limitation of photosynthesis was confirmed by measurements of the 13C/12C composition of leaf tissue. Water-use efficiency was increased in the plants grown at high salinity.Abbreviations and symbols A net CO2 assimilation rate - C a ambient CO2 concentration - C i intercellular CO2 concentration - 13C isotopic ratio (13C/12C) expressed relative to a standard - RuBP ribulose-1,5-bisphosphate  相似文献   

20.
The Golan Heights borders the Upper Jordan Valley on its eastern side and likely served as a prime foraging area for hominin groups that inhabited the Upper Jordan Valley during the Mid-Pleistocene. This study tests the hypothesis that Mid-Pleistocene climate in the Golan region was similar to that of the present day. Carbon isotope composition of present day plant communities and soil organic carbon from the Golan were compared to those of paleosols from Nahal Orvim to reconstruct Mid-Pleistocene paleoclimatic conditions. After correcting the paleosol values for recent changes in atmospheric carbon isotope values and potential biodegradation, the isotopic results show a strong similarity to those of present day local plants and soils. These results indicate that during the Mid-Pleistocene, the Golan was dominated by C3 vegetation, shared similar climatic conditions with the present day, and displayed long-term environmental stability. The span of time of paleosol formation is unknown and might cover multiple climatic episodes; thus, although short climatic fluctuations may have occurred, their impact was not substantial enough to be detected in the Nahal Orvim paleosols. This study concludes that the Golan slopes provided hominins and large grazers with a reliable and highly nutritious foraging area that complemented the Jordan Valley riparian ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号