首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Pathogenic CD8+ T cells are implicated in the physiopathological mechanisms leading to experimental cerebral malaria (CM) in Plasmodium berghei ANKA (PbA) infected mice. Therefore, we hypothesised that in CM susceptible mice the neuropathology could be, at least in part, the result of an inefficient control of pathogenic effector T cells by CD4+ CD25+ Treg cells. Remarkably, the number of CD4+ CD25high T cells expressing Foxp3 increased in the spleen during the course of infection. These cells displayed an activated phenotype and consistent with that, CD4+ CD25high Treg cells isolated from PbA-infected mice showed an enhanced regulatory activity in vitro. Surprisingly, these cells do not migrate to the brain at the time of neurological symptoms as the conventional CD4+ T cells do. CM was not exacerbated in anti-CD25 treated mice when infected with PbA one month after treatment, even if splenic CD8+ T cells expressing CD69 increased in these mice. Taken together, these results show that P. berghei infection leads to an increase of the number of splenic CD4+ CD25high Treg cells exhibiting in vitro suppressive function, but they do not seem to be involved in vivo in the protection against CM.  相似文献   

2.
Innate inflammatory events promoting antiviral defense in the liver against murine cytomegalovirus (MCMV) infection have been characterized. However, the mechanisms that regulate the selective recruitment of inflammatory T lymphocytes to the liver during MCMV infection have not been defined. The studies presented here demonstrate the expression of monokine induced by gamma interferon (IFN-gamma; Mig/CXCL9) and IFN-gamma-inducible protein 10 (IP-10/CXCL10) in liver leukocytes and correlate their production with the infiltration of MCMV-specific CD8 T cells into the liver. Antibody-mediated neutralization of CXCL9 and CXCL10 and studies using mice deficient in CXCR3, the primary known receptor for these chemokines, revealed that CXCR3-dependent mechanisms promote the infiltration of virus-specific CD8 T cells into the liver during acute infection with MCMV. Furthermore, CXCR3 functions augmented the hepatic accumulation of CD8 T-cell IFN-gamma responses to MCMV. Evaluation of protective functions demonstrated enhanced pathology that overlapped with transient increases in virus titers in CXCR3-deficient mice. However, ultimate viral clearance and survival were not compromised. Thus, CXCR3-mediated signals support the accumulation of MCMV-specific CD8 T cells that contribute to, but are not exclusively required for, protective responses in a virus-infected tissue site.  相似文献   

3.
Cerebral malaria (CM) can be a fatal manifestation of Plasmodium falciparum infection. Using murine models of malaria, we found much greater up-regulation of a number of chemokine mRNAs, including those for CXCR3 and its ligands, in the brain during fatal murine CM (FMCM) than in a model of non-CM. Expression of CXCL9 and CXCL10 RNA was localized predominantly to the cerebral microvessels and in adjacent glial cells, while expression of CCL5 was restricted mainly to infiltrating lymphocytes. The majority of mice deficient in CXCR3 were found to be protected from FMCM, and this protection was associated with a reduction in the number of CD8+ T cells in brain vessels as well as reduced expression of perforin and FasL mRNA. Adoptive transfer of CD8+ cells from C57BL/6 mice with FMCM abrogated this protection in CXCR3-/- mice. Moreover, there were decreased mRNA levels for the proinflammatory cytokines IFN-gamma and lymphotoxin-alpha in the brains of mice protected from FMCM. These data suggest a role for CXCR3 in the pathogenesis of FMCM through the recruitment and activation of pathogenic CD8+ T cells.  相似文献   

4.
Malaria remains a major global health problem and cerebral malaria (CM) is one of the most serious complications of this disease. Recent years have seen important advances in our understanding of the pathogenesis of cerebral malaria. Parasite sequestration, a hallmark of this syndrome, is thought to be solely responsible for the pathological process. However, this phenomenon cannot explain all aspects of the pathogenesis of CM. The use of an animal model, Plasmodium berghei ANKA in mice, has allowed the identification of specific pathological components of CM. Although multiple pathways may lead to CM, an important role for CD8+ T cells has been clarified. Other cells, including platelets, and mediators such as cytokines also have an important role. In this review we have focused on the role of T cells, and discuss what remains to be studied to understand the pathways by which these cells mediate CM.  相似文献   

5.
CD8+ T cells have been implicated as critical effector cells in protection against preerythrocytic stage malaria, including the potent protective immunity of mice and humans induced by immunization with radiation-attenuated Plasmodium spp. sporozoites. This immunity is directed against the Plasmodium spp. parasite developing within the host hepatocyte and for a number of years has been presumed to be mediated directly by CD8+ CTL or indirectly by IFN-gamma released from CD8+ T cells. In this paper, in BALB/c mice, we establish that after immunization with irradiated sporozoites or DNA vaccines parasite-specific CD8+ T cells trigger a novel mechanism of adaptive immunity that is dependent on T cell- and non-T cell-derived cytokines, in particular IFN-gamma and IL-12, and requires NK cells but not CD4+ T cells. The absolute requirement for CD8+ T cells to initiate such an effector mechanism, and the requirement for IL-12 and NK cells in such vaccine-induced protective immunity, are unique and underscore the complexity of the immune responses that protect against malaria and other intracellular pathogens.  相似文献   

6.
Liver macrophages internalize circulating bloodborne parasites. It remains poorly understood how this process affects the fate of the macrophages and T cell responses in the liver. Here, we report that infection by Trypanosoma brucei induced depletion of macrophages in the liver, leading to the repopulation of CXCL16-secreting intrahepatic macrophages, associated with substantial accumulation of CXCR6+CD4+ T cells in the liver. Interestingly, disruption of CXCR6 signaling did not affect control of the parasitemia, but significantly enhanced the survival of infected mice, associated with reduced inflammation and liver injury. Infected CXCR6 deficient mice displayed a reduced accumulation of CD4+ T cells in the liver; adoptive transfer experiments suggested that the reduction of CD4+ T cells in the liver was attributed to a cell intrinsic property of CXCR6 deficient CD4+ T cells. Importantly, infected CXCR6 deficient mice receiving wild-type CD4+ T cells survived significantly shorter than those receiving CXCR6 deficient CD4+ T cells, demonstrating that CXCR6+CD4+ T cells promote the mortality. We conclude that infection of T. brucei leads to depletion and repopulation of liver macrophages, associated with a substantial influx of CXCR6+CD4+ T cells that mediates mortality.  相似文献   

7.
Few studies have addressed the consequences of physical interactions between NK and T cells, as well as physical interactions among NK cells themselves. We show in this study that NK cells can enhance T cell activation and proliferation in response to CD3 cross-linking and specific Ag through interactions between 2B4 (CD244) on NK cells and CD48 on T cells. Furthermore, 2B4/CD48 interactions between NK cells also enhanced proliferation of NK cells in response to IL-2. Overall, these results suggest that NK cells augment the proliferation of neighboring T and NK cells through direct cell-cell contact. These results provide new insights into NK cell-mediated control of innate and adaptive immunity and demonstrate that receptor/ligand-specific cross talk between lymphocytes may occur in settings other than T-B cell or T-T cell interactions.  相似文献   

8.
TLRs initiate the host immune response to microbial pathogens by activating cells of the innate immune system. Dendritic cells (DCs) can be categorized into two major groups, conventional DCs (including CD8(+) and CD8(-) DCs) and plasmacytoid DCs. In mice, these subsets of DCs express a variety of TLRs, with conventional DCs responding in vitro to predominantly TLR3, TLR4, TLR5, and TLR9 ligands, and plasmacytoid DCs responding mainly to TLR7 and TLR9 ligands. However, the in vivo requirement of DCs to initiate immune responses to specific TLR agonists is not fully known. Using mice depleted of >90% of CD11c(+) MHC class II(+) DCs, we demonstrate that cellular recruitment, including CD4(+) T cell and CX5(+)DX5(+) NK cell recruitment to draining lymph nodes following the footpad administration of TLR4 and TLR5 agonists, is dramatically decreased upon reduction of DC numbers, but type I IFN production can partially substitute for DCs in response to TLR3 and TLR7 agonists. Interestingly, TLR ligands can activate T cells and NK cells in the draining lymph nodes, even with reduced DC numbers. The findings reveal considerable plasticity in the response to TLR agonists, with TLR4 and TLR5 agonists sharing the requirement of DCs for subsequent lymph node recruitment of NK and T cells.  相似文献   

9.
Abstract. Lysosomal inhibitors (amino acid methyl esters) and platelet-derived growth factor stimulate resting NIH 3T3 cells to enter the S period. Incubation of cells in medium containing lysosomal inhibitors causes an increase in protein accumulation and does not disrupt lysosomes. The results indicate that proliferative homeostasis depends partially on the metabolic status of the cell and that catabolic processes activated in resting cells negatively influence prereplicative reactions.  相似文献   

10.
Lysosomal inhibitors (amino acid methyl esters) and platelet-derived growth factor stimulate resting NIH 3T3 cells to enter the S period. Incubation of cells in medium containing lysosomal inhibitors causes an increase in protein accumulation and does not disrupt lysosomes. The results indicate that proliferative homeostasis depends partially on the metabolic status of the cell and that catabolic processes activated in resting cells negatively influence prereplicative reactions.  相似文献   

11.
Previous studies have shown that heterologous viral infections have a significant impact on pre-existing memory T cell populations in secondary lymphoid organs through a combination of cross-reactive and bystander effects. However, the impact of heterologous viral infections on effector/memory T cells in peripheral sites is not well understood. In this study, we have analyzed the impact of a heterologous influenza virus infection on Sendai virus-specific CD8(+) effector/memory cells present in the lung airways. The data show a transient increase in the numbers of Sendai virus nucleoprotein 324-332/K(b)-specific CD8(+) memory T cells in the airways of the influenza-infected mice peaking around day 4 postinfection. Intratracheal transfer studies and 5-bromo-2'-deoxyuridine incorporation demonstrate that this increase is due to the recruitment of resting memory cells into the airways. In addition, the data show that these immigrating memory cells are phenotypically distinct from the resident memory T cells of the lung airways. A similar influx of nonproliferating Sendai virus nucleoprotein 324-332/K(b)-specific CD8(+) memory T cells is also induced by a secondary (homologous) infection with Sendai virus. Together, these data suggest that inflammation can accelerate memory T cell migration to nonlymphoid tissues and is a part of the normal recall response during respiratory infections.  相似文献   

12.
We previously demonstrated that protection induced by radiation-attenuated (gamma) Plasmodium berghei sporozoites is linked to MHC class I-restricted CD8(+) T cells specific for exoerythrocytic-stage Ags, and that activated intrahepatic memory CD8(+) T cells are associated with protracted protection. In this study, we further investigated intrahepatic memory CD8(+) T cells to elucidate mechanisms required for their maintenance. Using phenotypic markers indicative of activation (CD44, CD45RB), migration (CD62L), and IFN-gamma production, we identified two subsets of intrahepatic memory CD8(+) T cells: the CD44(high)CD45RB(low)CD62L(low)CD122(low) phenotype, representing the dominant effector memory set, and the CD44(high)CD45RB(high)CD62L(low/high)CD122(high) phenotype, representing the central memory set. Only the effector memory CD8(+) T cells responded swiftly to sporozoite challenge by producing sustained IFN-gamma; the central memory T cells responded with delay, and the IFN-gamma reactivity was short-lived. In addition, the subsets of liver memory CD8(+) T cells segregated according to the expression of CD122 (IL-15R) in that only the central memory CD8(+) T cells were CD122(high), whereas the effector memory CD8(+) T cells were CD122(low). Moreover, the effector memory CD8(+) T cells declined as protection waned in mice treated with primaquine, a drug that interferes with the formation of liver-stage Ags. We propose that protracted protection induced by P. berghei radiation-attenuated sporozoites depends in part on a network of interactive liver memory CD8(+) T cell subsets, each representing a different phase of activation or differentiation, and the balance of which is profoundly affected by the repository of liver-stage Ag and IL-15.  相似文献   

13.
Cerebral malaria (CM) develops in a small proportion of persons infected with Plasmodium falciparum and accounts for a substantial proportion of the mortality due to this parasite. The actual pathogenic mechanisms are still poorly understood, and in humans investigations of experimental CM are unethical. Using an established Plasmodium berghei-mouse CM model, we have investigated the role of host immune cells at the pathological site, the brain. We report in this study the detailed quantification and characterization of cells, which migrated and sequestered to the brain of mice with CM. We demonstrated that CD8(+) alphabeta T cells, which sequester in the brain at the time when neurological symptoms appear, were responsible for CM mortality. These observations suggest a mechanism which unifies disparate observations in humans.  相似文献   

14.
Murine T cell populations specific for Plasmodium berghei parasites were generated in vitro from BALB/c immune lymph node cells. The malaria-specific T lymphocytes were shown: a) to proliferate specifically in vitro in response to stimulation with P. berghei-infected red blood cells; b) to exhibit the Thy-1+, Lyt-1+2- cell surface phenotype; c) to provide specific helper activity for an in vitro anti-hapten (TNP) plaque-forming cell antibody response; and d) to protect P. berghei-infected mice from early mortality due to cerebral malaria.  相似文献   

15.
Peptide vaccines containing minimal epitopes of protective Ags provide the advantages of low cost, safety, and stability while focusing host responses on relevant targets of protective immunity. However, the limited complexity of malaria peptide vaccines raises questions regarding their equivalence to immune responses elicited by the irradiated sporozoite vaccine, the "gold standard" for protective immunity. A panel of CD4+ T cell clones was derived from volunteers immunized with a peptide vaccine containing minimal T and B cell epitopes of the Plasmodium falciparum circumsporozoite protein to compare these with previously defined CD4+ T cell clones from volunteers immunized with irradiated P. falciparum sporozoites. As found following sporozoite immunization, the majority of clones from the peptide-immunized volunteers recognized the T* epitope, a predicted universal T cell epitope, in the context of multiple HLA DR and DQ molecules. Peptide-induced T cell clones were of the Th0 subset, secreting high levels of IFN-gamma as well as variable levels of Th2-type cytokines (IL-4, IL-6). The T* epitope overlaps a polymorphic region of the circumsporozoite protein and strain cross-reactivity of the peptide-induced clones correlated with recognition of core epitopes overlapping the conserved regions of the T* epitope. Importantly, as found following sporozoite immunization, long-lived CD4+ memory cells specific for the T* epitope were detectable 10 mo after peptide immunization. These studies demonstrate that malaria peptides containing minimal epitopes can elicit human CD4+ T cells with fine specificity and potential effector function comparable to those elicited by attenuated P. falciparum sporozoites.  相似文献   

16.
CD4(+) T cells co-expressing CD25 (CD4(+)CD25(+) T cells) have been identified as immunoregulatory suppressors modulating autoimmune response. Beside that, autoimmune response was supposed to be associated with malaria infection. Based on these data, we hypothesised that CD4(+)CD25(+) T cells may influence protective immunity to malaria parasites, while suppressing autoimmune response arising throughout the course of malarial infection. To test this possibility, we evaluated the kinetics of CD4(+)CD25(+) T cells during malaria infection and investigated the influence of CD25 depletion by anti-mouse CD25 monoclonal antibody (PC61) on the infection, using a mouse model of premunition to Plasmodium berghei NK65 malaria. The results showed that, during exacerbation of P. berghei NK65 infection, the proportion of CD4(+)CD25(+) T cells among CD4(+) T cells decreased, although that of CD4(+) T cells increased. CD25 depletion clearly delayed the growth of parasitaemia during parasite challenge, particularly in immunised mice. These findings demonstrated that CD4(+)CD25(+) T cells are able to influence protective immunity underlying premunition to P. berghei NK65 parasites.  相似文献   

17.
The ability of regulatory T cells (Treg) to traffic to sites of inflammation supports their role in controlling immune responses. This feature supports the idea that adoptive transfer of in vitro expanded human Treg could be used for treatment of immune/inflammatory diseases. However, the migratory behavior of Treg, as well as their direct influence at the site of inflammation, remains poorly understood. To explore the possibility that Treg may have direct anti-inflammatory influences on tissues, independent of their well-established suppressive effects on lymphocytes, we studied the adhesive interactions between mouse Treg and endothelial cells, as well as their influence on endothelial function during acute inflammation. We show that Foxp3(+) adaptive/inducible Treg (iTreg), but not naturally occurring Treg, efficiently interact with endothelial selectins and transmigrate through endothelial monolayers in vitro. In response to activation by endothelial Ag presentation or immobilized anti-CD3ε, Foxp3(+) iTreg suppressed TNF-α- and IL-1β-mediated endothelial selectin expression and adhesiveness to effector T cells. This suppression was contact independent, rapid acting, and mediated by TGF-β-induced activin receptor-like kinase 5 signaling in endothelial cells. In addition, Foxp3(+) iTreg adhered to inflamed endothelium in vivo, and their secretion products blocked acute inflammation in a model of peritonitis. These data support the concept that Foxp3(+) iTreg help to regulate inflammation independently of their influence on effector T cells by direct suppression of endothelial activation and leukocyte recruitment.  相似文献   

18.
19.
CXCR1+CD4+ T cells in human allergic disease   总被引:3,自引:0,他引:3  
Chemokine receptors play an important role in the migration of leukocytes to sites of allergic inflammation in humans. In this study, we have identified increased expression of the chemokine receptor CXCR1 on CD4+ T lymphocytes derived from patients with atopic disease compared with normal donors. Enhanced expression of CXCR1 by atopic donors was identified on freshly isolated peripheral blood cells and on expanded cell populations derived from nasal mucosal biopsies and from the periphery. Identification of CXCR1 expression on CD4 cells in the nasal mucosa was confirmed by double immunofluorescence. In addition, expression of CXCR1 was dramatically decreased in patients undergoing successful treatment of allergic rhinitis by specific immunotherapy. CXCR1 provided a functional receptor capable of regulating T cells in the context of allergic disease, since expression of CXC chemokine ligand 8 was up-regulated at the site of allergic inflammation and freshly isolated CXCR1+CD4+ cells from atopic donors showed an enhanced functional response to this ligand. CXCR1 expression on CD4+ T cells was increased in vitro in response to the pro-Th2 cytokine IL-4. Phenotypic analysis reveals that IFN-gamma expression was lower in the CXCR1+CD4+ cells. The identification of CXCR1 as a marker of allergic rhinitis reveals a possible target for therapeutic intervention in atopic disease.  相似文献   

20.
The malaria parasite, Plasmodium yoelii 17X, causes a self-limited, nonlethal infection characterized, in the blood stage, by preferential invasion of reticulocytes. Previous studies have suggested that immunity to the blood stage infection may be related to enhanced levels of class I MHC Ag on the parasitized reticulocyte surface and can be adoptively transferred to immunodeficient mice by immune CD8+ T cells in the absence of CD4+ T cells. To further examine the mechanisms of CD8+ T cell involvement in immunity to blood stage P. yoelii infection, we performed in vivo CD8 depletion and adoptive transfer experiments. Depletion of CD8+ T cells during primary blood stage infection in BALB/c mice did not diminish the ability of the mice to resolve their infections. Spleen cells from immune BALB/c and C57BL/10 mice were transferred to BALB/c-nu/nu and C57BL/10-nu/nu mice, respectively. The recipient mice were CD4 depleted in vivo to kill any transferred CD4+ T cells. The mice failed to control the infection. Populations of CD4-, CD8+ T cells were transferred from immune CBA/CaJ donors to in vivo CD4-depleted CBA/CaJ recipients. The mice were unable to control the infection. Although immune unfractionated spleen cells transferred rapid protection in all three mouse strains and immune CD4+ T cells transferred immunity in the two mouse strains studied, CD8+ T cells by themselves were neither protective nor did they enhance immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号