首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding diversity patterns along environmental gradients and their underlying mechanisms is a major topic in current biodiversity research. In this study, we investigate for the first time elevational patterns of vascular plant species richness and endemism on a long-isolated continental island (Crete) that has experienced extensive post-isolation mountain uplift. We used all available data on distribution and elevational ranges of the Cretan plants to interpolate their presence between minimum and maximum elevations in 100-m elevational intervals, along the entire elevational gradient of Crete (0–2400 m). We evaluate the influence of elevation, area, mid-domain effect, elevational Rapoport effect and the post-isolation mountain uplift on plant species richness and endemism elevational patterns. Furthermore, we test the influence of the island condition and the post-isolation mountain uplift to the elevational range sizes of the Cretan plants, using the Peloponnese as a continental control area. Total species richness monotonically decreases with increasing elevation, while endemic species richness has a unimodal response to elevation showing a peak at mid-elevation intervals. Area alone explains a significant amount of variation in species richness along the elevational gradient. Mid-domain effect is not the underlying mechanism of the elevational gradient of plant species richness in Crete, and Rapoport''s rule only partly explains the observed patterns. Our results are largely congruent with the post-isolation uplift of the Cretan mountains and their colonization mainly by the available lowland vascular plant species, as high-elevation specialists are almost lacking from the Cretan flora. The increase in the proportion of Cretan endemics with increasing elevation can only be regarded as a result of diversification processes towards Cretan mountains (especially mid-elevation areas), supported by elevation-driven ecological isolation. Cretan plants have experienced elevational range expansion compared to the continental control area, as a result of ecological release triggered by increased species impoverishment with increasing elevation.  相似文献   

2.
Understanding the species diversity patterns along elevational gradients is critical for biodiversity conservation in mountainous regions. We examined the elevational patterns of species richness and turnover, and evaluated the effects of spatial and environmental factors on nonvolant small mammals (hereafter “small mammal”) predicted a priori by alternative hypotheses (mid‐domain effect [MDE], species–area relationship [SAR], energy, environmental stability, and habitat complexity]) proposed to explain the variation of diversity. We designed a standardized sampling scheme to trap small mammals at ten elevational bands across the entire elevational gradient on Yulong Mountain, southwest China. A total of 1,808 small mammals representing 23 species were trapped. We observed the hump‐shaped distribution pattern of the overall species richness along elevational gradient. Insectivores, rodents, large‐ranged species, and endemic species richness showed the general hump‐shaped pattern but peaked at different elevations, whereas the small‐ranged species and endemic species favored the decreasing richness pattern. The MDE and the energy hypothesis were supported, whereas little support was found for the SAR, the environmental stability hypothesis, and the habitat complexity. However, the primary driver(s) for richness patterns differed among the partitioning groups, with NDVI (the normalized difference vegetation index) and MDE being the most important variables for the total richness pattern. Species turnover for all small mammal groups increased with elevation, and it supported a decrease in community similarity with elevational distance. Our results emphasized for increased conservation efforts in the higher elevation regions of the Yulong Mountain.  相似文献   

3.
Increasingly large presence‐only survey datasets are becoming available for use in conservation assessments. Potentially, these records could be used to determine spatial patterns of plant species rarity and endemism. We test the integration of a large South Korean species record database with Rabinowitz rarity classes. Rabinowitz proposed seven classes of species rarity using three variables: geographic range, habitat specificity, and local population size. We estimated the range size and local abundance of 2,215 plant species from species occurrence records and habitat specificity as the number of landcover types each species’ records were found in. We classified each species into a rarity class or as common, compared species composition by class to national lists, and mapped the spatial pattern of species richness for each rarity class. Species were classed to narrow or wide geographic ranges using 315 km, the average from a range size index of all species (Dmax), based on maximum distance between observations. There were four classes each within the narrow and wide range groups, sorted using cutoffs of local abundance and habitat specificity. Nationally listed endangered species only appeared in the narrow‐range classes, while nationally listed endemic species appeared in almost all classes. Species richness in most rarity classes was high in northeastern South Korea especially for species with narrow ranges. Policy implications. Large presence‐only surveys may be able to estimate some classes of rarity better than others, but modification to include estimates of local abundance and habitat types, could greatly increase their utility. Application of the Rabinowitz rarity framework to such surveys can extend their utility beyond species distribution models and can identify areas that need further surveys and for conservation priority. Future studies should be aware of the subjectivity of the rarity classification and that regional scale implementations of the framework may differ.  相似文献   

4.
We studied frog biodiversity along an elevational gradient in the Hengduan Mountains, China. Endemic and non-endemic elevational diversity patterns were examined individually. Competing hypotheses were also tested for these patterns. Species richness of total frogs, endemics and non-endemics peaked at mid-elevations. The peak in endemic species richness was at higher elevations than the maxima of total species richness. Endemic species richness followed the mid-domain model predictions, and showed a nonlinear relationship with temperature. Water and energy were the most important variables in explaining elevational patterns of non-endemic species richness. A suite of interacting climatic and geometric factors best explained total species richness patterns along the elevational gradient. We suggest that the mid-domain effect was an important factor to explain elevational richness patterns, especially in regions with high endemism.  相似文献   

5.
Aim To document patterns in diversity, altitudinal range and body size of freshwater fishes along an elevational gradient in the Yangtze River basin. Location The Yangtze River basin, China. Methods We used published data to compile the distribution, altitudinal range and body size of freshwater fishes. Correlation, regression, clustering and graphical analyses were used to explore patterns in diversity, altitudinal range and body size of freshwater fishes in 100‐m elevation zones from 0 to 5200 m. Results Species richness patterns across the elevational gradient for total, non‐endemic and endemic fishes were different. The ratio of endemics to total richness peaked at mid elevation. Land area on a 500‐m interval scale explained a significant amount of the variation in species richness. Species density displayed two peaks at mid‐elevation zones. The cluster analysis revealed five distinct assemblages across the elevation gradient. The relationship between elevational range size and the midpoint of the elevational range revealed a triangular distribution. The frequency distribution of log maximum standard length data displayed an atypical right‐skewed pattern. Intermediate body sizes occurred across the greatest range of elevation while small and large body sizes possessed only small elevational amplitudes. The size‐elevation relationship between the two major families revealed a very strong pattern of body size constraint among the Cobitidae with no corresponding elevational constraint and a lot of body size and elevational diversification among the Cyprinidae. Main conclusion The data failed to support either Rapoport's rule or Bergmann's rule.  相似文献   

6.

Background

Understanding diversity patterns and the mechanisms underlying those patterns along elevational gradients is critically important for conservation efforts in montane ecosystems, especially those that are biodiversity hotspots. Despite recent advances, consensus on the underlying causes, or even the relative influence of a suite of factors on elevational diversity patterns has remained elusive.

Methods and Principal Findings

We examined patterns of species richness, density and range size distribution of birds, and the suite of biotic and abiotic factors (primary productivity, habitat variables, climatic factors and geometric constraints) that governs diversity along a 4500-m elevational gradient in the Eastern Himalayan region, a biodiversity hotspot within the world''s tallest mountains. We used point count methods for sampling birds and quadrats for estimating vegetation at 22 sites along the elevational gradient. We found that species richness increased to approximately 2000 m, then declined. We found no evidence that geometric constraints influenced this pattern, whereas actual evapotranspiration (a surrogate for primary productivity) and various habitat variables (plant species richness, shrub density and basal area of trees) accounted for most of the variation in bird species richness. We also observed that ranges of most bird species were narrow along the elevation gradient. We find little evidence to support Rapoport''s rule for the birds of Sikkim region of the Himalaya.

Conclusions and Significance

This study in the Eastern Himalaya indicates that species richness of birds is highest at intermediate elevations along one of the most extensive elevational gradients ever examined. Additionally, primary productivity and factors associated with habitat accounted for most of the variation in avian species richness. The diversity peak at intermediate elevations and the narrow elevational ranges of most species suggest important conservation implications: not only should mid-elevation areas be conserved, but the entire gradient requires equal conservation attention.  相似文献   

7.
We study how endemic, native and introduced arthropod species richness, abundance, diversity and community composition vary between four different habitat types (native forest, exotic forest of Cryptomeria japonica, semi-natural pasture and intensive pasture) and how arthropod richness and abundance change with increasing distance from the native forest in adjacent habitat types in Santa Maria Island, the Azores. Arthropods were sampled in four 150 m long transects in each habitat type. Arthropods were identified to species level and classified as Azorean endemic, single-island endemic (SIE), native, or introduced. The native forest had the highest values for species richness of Azorean endemics, SIEs and natives; and also had highest values of Azorean endemic diversity (Fisher’s alpha). In contrast, the intensive pasture had the lowest values for endemic and native species richness and diversity, but the highest values of total arthropod abundance and introduced species richness and diversity. Arthropod community composition was significantly different between the four habitat types. In the semi-natural pasture, the number of SIE species decreased with increasing distance from the native forest, and in the exotic forest the abundance of both Azorean endemics and SIEs decreased with increasing distance from the native forest. There is a gradient of decreasing arthropod richness and abundance from the native forest to the intensive pasture. Although this study demonstrates the important role of the native forest in arthropod conservation in the Azores, it also shows that unmanaged exotic forests have provided alternative habitat suitable for some native species of forest specialist arthropods, particularly saproxylic beetles.  相似文献   

8.
9.
We investigated the conservation concern of Azorean forest fragments and the entire Terceira Island surface using arthropod species vulnerability as defined by the Kattan index, which is based on species rarity. Species rarity was evaluated according to geographical distribution (endemic vs. non endemic species), habitat specialization (distribution across biotopes) and population size (individuals collected in standardized samples). Geographical rarity was considered at 'global' scale (species endemic to the Azorean islands) and 'regional' scale (single island endemics). Measures of species vulnerability were combined into two indices of conservation concern for each forest fragment: (1) the Biodiversity Conservation Concern index, BCC, which reflects the average rarity score of the species present in a site, and (2) one proposed here and termed Biodiversity Conservation Weight, BCW, which reflects the sum of rarity scores of the same species assemblage. BCW was preferable to prioritise the areas with highest number of vulnerable species, whereas BCC helped the identification of areas with few, but highly threatened species due to a combination of different types of rarity.A novel approach is introduced in which BCC and BCW indices were also adapted to deal with probabilities of occurrence instead of presence/absence data. The new probabilistic indices, termed pBCC and pBCW, were applied to Terceira Island for which we modelled species distributions to reconstruct species occurrence with different degree of probability also in areas from which data were not available. The application of the probabilistic indices revealed that some island sectors occupied by secondary vegetation, and hence not included in the current set of protected areas, may in fact host some rare species. This result suggests that protecting marginal non-natural areas which are however reservoirs of vulnerable species may also be important, especially when areas with well preserved primary habitats are scarce.  相似文献   

10.
Roadsides are habitats with very specific environmental conditions, often substantially differing from their natural surroundings. However, roads can have a positive effect on local vascular plant species richness. Endemic species on oceanic islands are considered to be less disturbance-adapted than native non-endemics and thus should be negatively affected by roads. Islands provide optimal conditions for testing this, as they possess a large share of clearly defined endemic species. This study focuses on a comparison of endemic plant species in roadside and surrounding communities and the interacting effects of elevation, vegetation type and trade wind-induced precipitation differences. We applied 96 circular plots with 50 m radius along two elevational gradients on the eastern (humid) and western (dry) slope of La Palma, Canary Islands, ranging from 100 to 2,400 m. Interestingly, we found roads to have a significant positive effect on endemic richness and the percentage of endemics as well as the same tendency for plant species richness after correcting for elevation and precipitation. Endemic species turnover was relatively high. The opening of cliffs during construction and, not to be overlooked, the protection from disturbances such as fire and omnipresent introduced herbivores (mainly rabbits or goats) probably leads to a positive effect of roads on endemics. In addition, many endemics might profit from species-specific dispersal capabilities well suited for roadside conditions. However, we do not argue for the use or even construction of roads for nature conservation but suggest protecting existing endemic populations because natural areas have a higher conservation value.  相似文献   

11.
Aim To investigate the distribution of Australian species of Sauropus. The information obtained is used to (1) identify areas of highest richness and centres of endemism, (2) investigate latitudinal gradients of richness and range size, (3) determine the types of rarity shown, and (4) provide hypotheses on historical biogeography of the genus within Australia. Location Australia. Methods Specimens from 17 herbaria and field searches were examined and label and field information collated on distribution, habit and habitat. Distribution information was used to map all species within 784 grid cells of 1° × 1° and within the 97 Australian ‘ecological regions’. Morphometric cluster analysis of species was conducted using Kulczynski association and flexible UPGMA on 23 character states. Simple regression was used to correlate species richness, density and range size to changes in latitude. CLIMEX is used to match the climate of the region of highest richness in Australia with other areas of the world. Results Species richness was highest within the tropical north of Australia, and most species were associated with tropical savanna woodlands. Two areas were identified as centres of endemism and these corresponded closely to areas of high species richness. Four morphological groups were identified. One species (Sauropus trachyspermus) was found to be widespread, however all other species had small geographical ranges. Species richness and range size were significantly correlated with changes in latitude. Ten species were found to be of the rarest type, warranting conservation initiatives. Main conclusions Two regions of high richness and endemism of Sauropus occur, Thailand and Australia. Within Australia, the Kakadu‐Alligator River and the Cairns‐Townsville areas were identified as centres of endemism and high species richness for Sauropus. Australian Sauropus in general occur in similar communities and climates as other members of the genus elsewhere. Ten of the 27 species of Australian endemic Sauropus are extremely rare and warrant conservation initiatives. Correlations of latitude to species richness are potentially due to Sauropus radiating from the climatically stable top end of Australia. Increasing range size in more southern latitudes may also be due to stability of climates in the top end or because there is more available land area at these latitudes. Sauropus micranthus, the only non‐endemic species, is probably a more recent invader from the Tertiary period when tropical rain forests where more extensive and congruent with those of New Guinea.  相似文献   

12.
The presence of endemic species is among the fundamental criteria for characterizing the biodiversity of a territory. Analyzing species richness, extinction level and distribution drivers is an important preliminary step to set conservation priorities and test environmental policies. This study applied the concept of adaptive management to develop strategies for the conservation of endemic floras by considering, as a case study, Sicily, Malta and their neighboring small islands. Adaptive management can be defined as the systematic acquisition and application of reliable information to improve management over time. The development of adaptive conservation strategies aimed preliminary: (1) to quantify endemic plant diversity; (2) to assess the current IUCN knowledge; (3) to analyze the spatial patterns of species distribution in relation to number of colonized habitats, preferential habitats, altitudinal range, and bedrock; (4) to assess whether Natura 2000 network contributed significantly to increase the overlap between endemic distributional areas and protected surface. Strictly Sicilian endemics were 202 taxa amounting to 7.0 % of the whole native flora (c. 2900 taxa). The current picture of extinction risk is still incomplete because over 50 % of endemics were never assessed or assessed with old IUCN criteria. The spatial range size of endemics depended by 40 % on bedrock, and altitudinal and niche breadth. Habitat type did not influence the range size of endemics. The overlap between endemic distributional areas and protected surface increased from 41.3 to 63.3 % with Natura 2000. Adaptive management needs measurable goals to test the progressive improvement of conservation strategies over time, and the reduction in threatened species may be considered as an indicator of successful conservation outcomes. Feedback plays an important role in the periodic revision of biodiversity assessment, distribution modeling, and environmental management, which are fundamental to predict conservation outcomes in the face of extreme uncertainty. In particular, the exhaustive knowledge of the IUCN status is a primary step to implement adaptive measures of conservation, especially as regards endemic floras that are potentially more vulnerable to large-scale or unpredictable and stochastic threats.  相似文献   

13.
The utility of elevational gradients as tools to test either ecological hypotheses and delineate elevation‐associated environmental factors that explain the species diversity patterns is critical for moss species conservation. We examined the elevational patterns of species richness and evaluated the effects of spatial and environmental factors on moss species predicted a priori by alternative hypotheses, including mid‐domain effect (MDE), habitat complexity, energy, and environment proposed to explain the variation of diversity. Last, we assessed the contribution of elevation toward explaining the heterogeneity among sampling sites. We observed the hump‐shaped distribution pattern of species richness along elevational gradient. The MDE and the habitat complexity hypothesis were supported with MDE being the primary driver for richness patterns, whereas little support was found for the energy and the environmental factors.  相似文献   

14.
Multiple-use protected areas, in which sustainable levels of extractive livelihood activities are permitted, play an increasingly important role in the global protected area estate, and are expected to rise in prevalence. However, we know little about their effectiveness at conserving biodiversity. We surveyed bird and reptile communities in three areas across a forest disturbance gradient resulting from charcoal production and shifting cultivation within a multiple-use protected area in Madagascar’s sub-arid spiny forest. We scored individual species using a Conservation Value Index (CVI; a simple metric based on rarity, threat and distinctiveness), and estimated the total conservation value of each treatment by calculating the sum of frequency-weighted CVI scores across all present species. Bird and reptile community responses to forest disturbance were idiosyncratic. Bird richness was greatest in the moderate-disturbance treatment, but the low-disturbance treatment had the superior conservation value due to higher frequencies of locally-endemic species. Reptile richness was the same in low- and moderate-disturbance treatments, but the conservation value of the latter was greater. The high-disturbance areas had lowest richness and conservation value for both groups. For birds, increasing disturbance levels were accompanied by community turnover from high-value to low-value species, a pattern highlighted by CVI that is masked by assessing species richness alone. Although some endemic species appear to be resilient to degradation, multiple-use protected areas in Madagascar may lose biodiversity since most endemic species are forest-dependent. Stricter protected area models may be more appropriate in areas where much of the high-value biodiversity is sensitive to habitat degradation.  相似文献   

15.
Ecosystems that provide environmental opportunities but are poor in species and functional richness generally support speciation as well as invasion processes. These processes are expected not to be equally effective along elevational gradients due to specific ecological, spatial, and anthropogenic filters, thus controlling the dispersal and establishment of species. Here, we investigate speciation and invasion processes along elevational gradients. We assess the vascular plant species richness as well as the number and percentage of endemic species and non‐native species systematically along three elevational gradients covering large parts of the climatic range of La Palma, Canary Islands. Species richness was negatively correlated with elevation, while the percentage of Canary endemic species showed a positive relationship. However, the percentage of Canary–Madeira endemics did not show a relationship with elevation. Non‐native species richness (indicating invasion) peaked at 500 m elevation and showed a consistent decline until about 1,200 m elevation. Above that limit, no non‐native species were present in the studied elevational gradients. Ecological, anthropogenic, and spatial filters control richness, diversification, and invasion with elevation. With increase in elevation, richness decreases due to species–area relationships. Ecological limitations of native ruderal species related to anthropogenic pressure are in line with the absence of non‐native species from high elevations indicating directional ecological filtering. Increase in ecological isolation with elevation drives diversification and thus increased percentages of Canary endemics. The best preserved eastern transect, including mature laurel forests, is an exception. The high percentage of Canary–Madeira endemics indicates the cloud forest's environmental uniqueness—and thus ecological isolation—beyond the Macaronesian islands.  相似文献   

16.
Using the data published in the Catalogue of the Flowering Plants and Gymnosperms of Peru, we analyzed the elevational distributions of 5323 species reported as endemics from that country as a whole, for 10 families with the highest number of endemic taxa in Peru, and the distribution patterns of these species according to life form. We calculated the density of endemism (number of endemic species divided by area × 1000) and absolute number of endemic species among life forms and families, along an elevational gradient. Overall densities of endemics were 10–15 times higher at mid-elevation (2000–3500 m) than in the Amazonian lowlands (0–500 m). Absolute numbers of endemics peaked at 1500–3000 m for herbs, shrubs, and epiphytes, while trees, vines, and lianas showed maxima in the lowlands (0–500 m); yet densities of endemics for all life forms peaked at 1500–3000 m. Among the 10 families with the highest number of endemics, densities of endemics peaked at mid- to high elevation (1500–4500 m), but showed much disparity in the elevational distribution of absolute numbers of endemic species. Finally, the percentage of endemic species to total species is highest for herbs, shrubs, and epiphytes. Given that less than 10% of the land area for each of the montane zones (2000–4500 m) is protected compared to 13.5–29.9% in the lower elevations (0–1000 m), we recommend that priority be given to increasing the size of protected areas at mid- to high altitude in the Andean slopes to grant further protection in zones with the highest density of endemics. We also recommend that more emphasis be given to collecting and studying non-trees, since most endemic species belong to that class.  相似文献   

17.
Cophyline narrow-mouthed frogs (Anura: Microhylidae) are a diverse endemic radiation of Madagascar. Cophylines contain a high proportion of range restricted species and constitute a good model system to understand patterns of evolutionary diversification in tropical ecosystems. We combine spatial and phylogenetic analyses for a near-complete taxon sample to test competing explanations for patterns of species richness (SR) and endemism. Our reconstruction of the phylogeny of cophylines indicates the presence of 22 new species and several instances of nonmonophyly. We found a strong historical signal in current cophyline ranges indicating a high degree of spatial niche conservatism in clade diversification, with clades occurring in the North of Madagascar constituting the most derived in the phylogeny. We identified six positively correlated centers of SR and endemism that can neither be explained by stochastic models such as elevational or latitudinal mid-domain effect, nor by low-elevation river catchments. Instead, the locations of these centers in areas spanning a high altitudinal range in combination with specific climatic parameters support a key role of mountainous areas for speciation of these anurans, although we cannot exclude an influence of habitat loss due to human impact. High conservation priority is ascribed to these areas.  相似文献   

18.
Exploring elevational patterns in species richness and their underlying mechanisms is a major goal in biogeography and community ecology. Reptiles can be powerful model organisms to examine biogeographical patterns. In this study, we examine the elevational patterns of reptile species richness and test a series of hypotheses that may explain them. We sampled reptile communities along a tropical elevational gradient (100–1,500 m a.s.l.) in the Western Ghats of India using time‐constrained visual encounter surveys at each 100‐m elevation zone for 3 years. First, we investigated species richness patterns across elevation and the support of mid‐domain effect and Rapoport's rule. Second, we tested whether a series of bioclimatic (temperature and tree density) and spatial (mid‐domain effect and area) hypotheses explained species richness. We used linear regression and AICc to compare competing models for all reptiles, and each of the subgroups: snakes, lizards, and Western Ghats’ endemics. Overall reptile richness and lizard richness both displayed linear declines with elevation, which was best explained by temperature. Snake richness and endemic species richness did not systematically vary across elevation, and none of the potential hypotheses explained variation in them. This is the first standardized sampling of reptiles along an elevational gradient in the Western Ghats, and our results agree with the global view that temperature is the primary driver of ectotherm species richness. By establishing strong reptile diversity–temperature associations across elevation, our study also has implications for the impact of future climate change on range‐restricted species in the Western Ghats.  相似文献   

19.
Douglas A. Kelt 《Ecography》1999,22(6):659-673
Ecological gradients have intrigued ecologists for many years. In southern California the Deep Canyon Transect spans a range of habitats and elevations from Lower Sonoran Desert sand dunes and creosote scrub to Upper Transition coniferous forest, where relict species typical of the Sierra Nevada are found. I sampled a 1050 n elevational range in this transect to evaluate the ecological distributions of small mammals and to better characterize community structure. Results complement and substantially extend a previous study of this fauna, and provide insights into the habitat associations of species in this complex fauna. Assemblage structure changed greatly between summer and winter, largely due to reduced presence of pocket mice Chuetodipus in winter. Additionally, the distribution of abundance and species richness was different than reported earlier, suggesting that patterns across this gradient may be temporally variable, and strongly influenced by local dynamics. Most taxa exhibited significantly nonrandom use of a large number of habitat variables but this was not a simple consequence of the elevational gradient. A mid-elevation bulge in species richness was indicated, but likely is not a consequence of mass effects since a number of animals captured in intermediate regions were reproductively active.  相似文献   

20.
Aim The aims of this paper are to: examine how current and historical ecological factors affect patterns of species richness, endemism and turnover in the Gulf of Guinea highlands, test theoretical biogeographical predictions and provide information for making informed conservation decisions. Location The Gulf of Guinea highlands in West Africa. Methods We used multivariate and matrix regression models, and cluster analyses to assess the influence of current climate and current and historical isolation on patterns of richness and turnover for montane birds across the highlands. We examined three groups of birds: montane species (including widespread species), montane endemics and endemic subspecies. We applied a complementarity‐based reserve selection algorithm using species richness with irreplaceability measures to identify areas of high conservation concern. Results Environmental factors influenced richness for all groups of birds (species, endemic species and subspecies). Areas with high and consistent annual rainfall showed the highest species and endemic richness. Species clusters for all groups of birds generally differentiated three major montane regions, which are topographically isolated. Multiple mantel tests identified these same regions for endemic species and subspecies. The influence of historical isolation varied by species group; distributions of endemic montane species and subspecies were more associated with historical breaks than were all montane species, which included widespread non‐endemic species. Main conclusions Our analyses indicated important geographical structure amongst the bird assemblages in the highlands and, therefore, conservation prioritization should include mountains from within the geographical subregions identified in these analyses because these regions may harbour evolutionarily distinct populations of birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号