首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North‐central Arizona, USA. Methods: We sampled 75 0.05‐ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non‐linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests.  相似文献   

2.
Abstract. Patterns of understory colonization by native and naturalized trees and shrubs were evaluated in 4.5-year-old plantations of three exotic tree species, Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala, on a degraded coastal grassland site with reference to overstory composition and understory environmental conditions. 19 secondary forest species were established in the plantation understories (with a total area of 0.52 ha), while no natural regeneration occurred in unplanted, though protected, control areas. The majority of these species (90 %) and the total seedling population (97 %) were zoochorous, indicating the importance of frugivorous bats and particularly birds as facilitators of secondary forest species colonization. Understory species richness and seedling densities were affected significantly by overstory composition, the most abundant regeneration occurring beneath Leucaena and least under Casuarina. Understory colonization rates within mixed-species stands were intermediate between those of single-species stands of the trees comprising their overstories. Significant negative correlations were found between understory species richness and seedling density, and forest floor depth and dry mass, especially for small-seeded ornithochorous species. Higher colonization rates near the peripheries of plantation plots relative to plot interiors were due in part to roosting site preferences by frugivores, particularly bats. The study results indicate that overstory species selection can exert a significant influence on subsequent patterns of colonization by secondary forest species and is an important consideration in the design of plantations for ‘catalyzing’ succession on deforested, degraded sites.  相似文献   

3.
To the discussion on secondary succession in tropical forests, we bring data on three under‐addressed issues: understory as well as overstory changes, continuous as opposed to phase changes, and integration of forest succession with indigenous fallow management and plant uses. Changes in vegetation structure and species composition were analyzed in secondary forests following swidden agriculture in a semideciduous forest of Bolivian lowlands. Twenty‐eight fallows, stratified by four successional stages (early = 1–5 yr, intermediate = 6–10 yr, advanced = 12–20 yr, and older = 22–36 yr), and ten stands of mature forests were sampled. The overstory (plants ≥5 cm diameter at breast height [DBH]) was sampled using a 20 × 50 m plot and the understory (plants <5 cm DBH) in three nested 2 × 5 m subplots. Semistructured interviews provided information on fallow management. Canopy height, basal area, and liana density of the overstory increased with secondary forest age. The early stage had the lowest species density and diversity in the overstory, but the highest diversity in the understory. Species composition and abundance differentiated mature forests and early successional stage from other successional stages; however, species showed individualistic responses across the temporal gradient. A total of 123 of 280 species were useful with edible, medicinal, and construction plants being the most abundant for both over‐ and understories. Most of Los Gwarayo preferred mature forests for making new swidden, while fallows were valuable for crops, useful species, and regenerating timber species.  相似文献   

4.
Sierra Nevada forests have high understory species richness yet we do not know which site factors influence herb and shrub distribution or abundance. We examined the understory of an old-growth mixed-conifer Sierran forest and its distribution in relation to microsite conditions. The forest has high species richness (98 species sampled), most of which are herbs with sparse cover and relatively equal abundance. Shrub cover is highly concentrated in discrete patches. Using overstory tree cover and microsite environmental conditions, four habitats were identified; tree cluster, partial canopy, gap, and rock/shallow soil. Herb and shrub species were strongly linked with habitats. Soil moisture, litter depth and diffuse light were the most significant environmental gradients influencing understory plant distribution. Herb cover was most strongly influenced by soil moisture. Shrub cover is associated with more diffuse light, less direct light, and sites with lower soil moisture. Herb richness is most affected by conditions which influence soil moisture. Richness is positively correlated with litter depth, and negatively correlated with direct light and shrub cover. Disturbance or management practices which change forest floor conditions, shallow soil moisture and direct light are likely to have the strongest effect on Sierran understory abundance and richness.  相似文献   

5.
We investigated species composition, distribution, and forest structure of understory trees (≥1 m height, <10 cm diameter at breast height) in two late-successional várzea forests subject to contrasting levels of inundation within the Mamirauá Sustainable Development Reserve, western Brazilian Amazon, and compared it with the overstory flora at the same study sites. In total, 1486 individuals and 116 woody species were recorded on an area totaling 3140 m2. Individual densities and tree species richness were considerably higher in the high várzea than in the low várzea, which suggests that the heights and durations of the annual inundations are the main factor limiting species regeneration. In addition, approximately one third of the recorded species with densities ≥8 individuals showed regular or random spatial distribution patterns, which suggests that floodwaters act on dispersal strategies and species establishment.Independent of the forest type, floristic similarity between the understory and the overstory amounted to approximately 35%, and to approximately 10% when compared to other understory inventories in Amazonian várzea. Although the inventoried area of the understory amounted to only 16% of that of the overstory, species richness accounted for approximately 52-56% of that of the overstory. The results indicate that the understory flora of várzea forests is distinct and that it significantly increases local tree species richness. The understory flora of várzea forests therefore should be addressed in floristic inventories that provide the basis for regional and/or basin-wide estimations of tree diversity.  相似文献   

6.
Conservation strategies of forested landscapes must consider biodiversity of the included site types, i.e. timber-quality forests and associated non-timber-quality stands. The objectives were to characterize forest overstory structure in timber-quality versus associated non-timber-quality stands; and to compare their understory communities. Six forest types were sampled in Nothofagus forests of Tierra del Fuego (Argentina): two timber-quality N. pumilio forests, and four associated non-timber-quality stands (edge, N. antarctica, wetlands and streamside forests). Overstory structure and understory vegetation (species richness, frequencies, cover and biomass) were characterized during spring and summer seasons. Analysis of variance and multivariates were carried out. Overstory structure differed across the site types, with higher tree size, canopy closure and tree volume in timber-quality stands. Fifty-one understory plant species were observed, but understory variables varied with site types, especially wetlands (highest native and exotic richness, cover and biomass, and 25% of exclusive species). Site types were grouped in three: N. antarctica stands, streamside stands and the other N. pumilio forests according to multivariate analysis. Forty three percent of plants were distributed in all site types, and all timber-quality forest understory species were present in some associated non-timber-quality stands. Timber-quality N. pumilio forests have a marginal value for understory conservation compared to associated non-timber-quality stands, because these last include all the plants observed in timber-quality forests and also possess many exclusive species. Therefore, protection of associated non-timber-quality stands during forest management planning could increase understory conservation at landscape level, and these could be better reserves of understory diversity than retentions of timber-quality stands.  相似文献   

7.
8.
Riparian forests are highly valued for maintaining water quality through the retention of sediments and nutrients. They also provide some of the most diverse and species-rich habitats in the world. What is largely unknown, however, is how sediment deposition affects plant community composition in these forests. The objective of this study was to examine changes in plant community composition across a gradient of increasing rates of sedimentation in riparian forests in the southeastern Coastal Plain, USA. Seventeen plots were established within riparian forests receiving between 0 and 5.5 cm year−1 of sediment deposits. Species density and biomass estimates were collected annually from 2002 to 2006 for overstory and mid-story plant species within each plot. Percent cover and nested frequency of understory plant species were determined annually during 2004–2006. Measures of community composition in the understory, mid-story, and overstory layers of forests were compared to changes in environmental factors associated with increased sedimentation. In the understory, annual, exotic, and upland species had higher importance values in plots receiving high sediment deposition. The densities of shade-intolerant and N-fixing species in the mid-story also increased with increasing sedimentation rates. Increased overstory mortality was associated with high sedimentation rates, though increases in understory light levels in these gaps were not the main driver of understory species changes. Edaphic factors, such as soil texture, moisture, and temperature, were significantly correlated to species composition in all three forest layers, suggesting that changes in soil physical structure due to sedimentation may drive community-level changes in these forests.  相似文献   

9.
Abstract. We studied the effects of windthrow on the understory plant species composition of a pine forest (dominated by Pinus strobus) and an oak forest (dominated by Quercus ellipsoidalis). We recorded the presence of vascular plant species in randomly located quadrats in the two forests, and in three microsite types associated with tipup mounds (pit, old soil and new soil) in the pine forest at irregular intervals over the course of 14 years. The understories of the two forests remained distinct throughout the study. The frequency of occurrence of a number of forest floor species considerably increased; few species decreased. The disturbance specialists Rubus idaeus and Polygonum cilinode increased in frequency throughout the study in the pine forest, but are beginning to decline in the less disturbed oak forest. Annuals and biennials preferentially colonized the disturbed soil of microsites on tipups, and declined in frequency after about 7 yr. Both forests have increased in understory species richness, but have not changed substantially in the distribution of growth forms. Despite early differences in species composition, microsite types associated with tipup mounds became more similar through time. Although small in magnitude, there was a directional change in understory composition at both forests, with no apparent sign of a return to pre‐disturbance conditions.  相似文献   

10.
Dennstaedtia punctilobula (hay‐scented fern) can act as a native invasive species in forests in eastern North America where prolonged deer browsing occurs in stands with partially open overstory canopies. Ferns dominate the understory with a 60‐cm tall canopy, with little regeneration of native tree species. It has been hypothesized that, once established, ferns may continue to inhibit tree regeneration after deer browsing has been reduced. To test this hypothesis, we documented the pattern of recovery of the tree seedling understory in plantations of Pinus strobus (white pine) and Pinus resinosa (red pine) on the Quabbin Reservation watershed protection forest in central Massachusetts, where after 40 years of intensive deer browsing the deer herd was rapidly reduced through controlled hunting. Dense fern understories occur on nearly 4,000 ha of the predominantly oak–pine forest. Three years after deer herd reduction, stands with the highest density fern cover (77% of plots with>90% cover) had significantly fewer seedlings at least 30 cm in height, compared with stands with lower fern density, and those seedlings consisted almost entirely of Betula lenta (black birch) and white pine. Height growth analysis showed that black birch and white pine grew above the height of the fern canopy in 3 and 6 years, respectively. In contrast, two common species, Fraxinus americana (white ash) and Quercus rubra (red oak), grew beneath the dense fern cover for 5 years with height growth less than 5 cm/yr after the first year. A study of spring phenology indicated that the ability of black birch to grow through the fern canopy might have been due to its early leaf development in spring before the fern canopy was formed, in contrast to oak and ash with delayed leaf development. Thus, the ferns showed differential interference among species with seedling development after reduction of deer browse.  相似文献   

11.
Summary The effect of tree canopy, understory, herbivores, and litter depth on seedling establishment, survival, and reproduction of the alien grass, Bromus tectorum (cheatgrass), was examined in a series of experiments in four forest habitat types in western North America. Higher recruitment, survival, and reproduction on clearcuts, which would be expected if the overstory alone is limiting the distribution of cheatgrass in forests, were not observed. Removing the understory in an otherwise undisturbed Pinus ponderosa forest did, however, increase the emergence of B. tectorum, but plants in these experimentally-created openings were more vulnerable to grazing by small mammals. In contrast, removing the sparse understory in an Abies forest neither enhanced recruitment nor increased the incidence of grazing of B. tectorum seedlings. Regardless of the forest habitat, most grazed plants died before maturity; even fewer grazed plants produced seeds. Litter depth influenced both recruitment and biomass production: both the rate of germination and the size of resultant seedlings were lower on thick litter (6 cm) compared to results on thin litter (1.5 cm). In the more open Pinus ponderosa and Pseudotsuga menziesii forests, cheatgrass colonization may often occur in openings in the understory alone. Colonization in the more shady A. grandis and Thuja plicata forests is unlikely, however, unless the opening extends through both the understory and the overstory. As a result, cheatgrass is unlikely to increase in any of these forests unless the scale and incidence of disturbance increases substantially.  相似文献   

12.
The understory is a diverse component of temperate forest ecosystems, contributing significantly to forest ecosystem services. Despite their importance, many native understories face stresses from current and past land use, habitat fragmentation, invasive species, and overabundant herbivores. We established a four block, three factor experiment to evaluate the relative contribution of native plant establishment, competitive effects from the invasive herb garlic mustard (Alliaria petiolata), and herbivory from white-tailed deer (Odocoileus virginianus) to better understand the mechanisms promoting low native plant richness and cover and understory dominance by the biennial exotic herb garlic mustard in a NE Wisconsin, USA forest. Four years of garlic mustard removal failed to increase native plant richness or cover in non-restored plots. However, deer access and the introduction of native plants (restoration treatment) both significantly enhanced native plant cover and richness, with restored species cover in fenced plots approximately 216 % that of open-access plots, and the majority of these species flowered at significantly higher proportions inside of fenced areas. In contrast, deer access did not significantly alter the cover, or seed production of garlic mustard. We also found no significant effect of garlic mustard presence on the cover or flowering of restored native species. We conclude that multiple factors, including limited natural establishment by native species and selective herbivory drove low native, high exotic dominance at our site, suggesting that a shift in focus from invasive plant removal to combined native plant restoration and herbivore control is needed to maximize the recovery of this degraded forest understory.  相似文献   

13.
We examined the spatial distribution of two bromeliad species with contrasting functional traits in the understory of a xerophytic South American Chaco forest. Aechmea distichantha is a facultative terrestrial species with well-developed phytotelma and short rhizomes, whereas Bromelia serra is a strictly terrestrial species with soil-exploring roots and long rhizomes. Both bromeliads develop colonies on relatively elevated patches in Schinopsis balansae forests. We evaluated the roles of environmental controls, limited dispersal, and interspecific competition as drivers of the different distribution of these bromeliads. We mapped the overstory, understory and topography of 16 forest plots with bromeliads (400 m2 each, subdivided in 100 4-m² subplots). We sampled soil characteristics on sectors dominated by each bromeliad species. We used structural equation modeling to assess direct and indirect associations of each bromeliad species cover with environmental conditions, abundance of conspecifics in the vicinity, and local abundance of the other species. A. distichantha cover increased on elevated subplots with high tree/shrub basal area, whereas B. serra cover showed the opposite pattern. In addition, A. distichantha cover was negatively associated with B. serra cover, but not vice versa, and cover of both species increased with the abundance of nearby conspecifics, suggesting that limited vegetative dispersal partly accounted for their distribution. Sectors dominated by A. distichantha had lower soil bulk density and higher organic matter content than those dominated by B. serra. According to our model, influences of competition and limited vegetative dispersal reinforce the association between distribution of these bromeliads and environmental heterogeneity of the forest understory.  相似文献   

14.
In tropical forests, regional differences in annual rainfall correlate with differences in plant species composition. Although water availability is clearly one factor determining species distribution, other environmental variables that covary with rainfall may contribute to distributions. One such variable is light availability in the understory, which decreases towards wetter forests due to differences in canopy density and phenology. We established common garden experiments in three sites along a rainfall gradient across the Isthmus of Panama in order to measure the differences in understory light availability, and to evaluate their influence on the performance of 24 shade-tolerant species with contrasting distributions. Within sites, the effect of understory light availability on species performance depended strongly on water availability. When water was not limiting, either naturally in the wetter site or through water supplementation in drier sites, seedling performance improved at higher light. In contrast, when water was limiting at the drier sites, seedling performance was reduced at higher light, presumably due to an increase in water stress that affected mostly wet-distribution species. Although wetter forest understories were on average darker, wet-distribution species were not more shade-tolerant than dry-distribution species. Instead, wet-distribution species had higher absolute growth rates and, when water was not limiting, were better able to take advantage of small increases in light than dry-distribution species. Our results suggest that in wet forests the ability to grow fast during temporary increases in light may be a key trait for successful recruitment. The slower growth rates of the dry-distribution species, possibly due to trade-offs associated with greater drought tolerance, may exclude these species from wetter forests.  相似文献   

15.
探讨了白桦树冠投影面积对林下日阴菅密度的影响,发现日阴菅密度随白桦树冠投影面积呈双峰型变化。海拔高度、坡向、坡度对于日阴菅随白桦树冠投影面积的变化也有一定程度的影响。白桦荫蔽度、日阴菅地上部生物量和土壤水分含量三者具有较为一致的格局规模,这表明白桦通过改变林下的光照和地表水分而影响了日阴菅的生长。日阴菅在中等尺度上与土壤有机质的格局规模一致。溪荪个体数量与土壤pH值在大、中尺度上均显示一致的格局规模,说明溪荪受pH值的影响。  相似文献   

16.
Red spruce (Picea rubens)–dominated forests occupied as much as 600,000 ha in West Virginia prior to exploitive logging era of the late nineteenth and early twentieth centuries. Subsequently, much of this forest type was converted to northern hardwoods. As an important habitat type for a number of rare or sensitive species, only about 12,000 ha of red spruce forests presently remain in the state. In order to assess the prospects for restoration, we examined six northern hardwood stands containing understory red spruce to (1) characterize stand dynamics and regeneration patterns and (2) simulate the effectiveness of restoration silviculture to enhance red spruce overstory recruitment. Stands originated in the late 1800s to early 1900s and are currently in the (late) stem exclusion or understory reinitiation stages. Five of the six stands had even‐aged overstories that originated after clear‐cutting. Tree‐ring chronologies show high initial growth rates consistent with stand initiation. One stand, partially harvested in 1915, was uneven aged with older, legacy residuals in the canopy. Most stands had two cohorts of understory red spruce, with more than 40% of these individuals showing prior release. Our 100‐year growth simulation suggested that a 50% basal area thinning from above could double red spruce basal area to support a mixed spruce–hardwood stand in approximately 20–40 years. These results indicate that restoration silviculture could be an effective tool for increasing the amount and quality of this reduced forest type in the central Appalachians.  相似文献   

17.
Throughout Pinus ponderosaPseudotsuga menziesii forests of the southern Colorado Front Range, USA, intense logging and domestic grazing began at the time of Euro-American settlement in the late 1800s and continued until the early 1900s. We investigated the long-term impacts of these settlement-era activities on understory plant communities by comparing understory composition at a historically logged and grazed site to that of an environmentally similar site which was protected from past use. We found that species richness and cover within functional groups rarely differed between sites in either upland or riparian areas. Multivariate analyses revealed little difference in species composition between sites on uplands, though compositional differences were apparent in riparian zones. Our findings suggest that settlement-era logging and grazing have had only minor long-term impacts on understories of upland Front Range P. ponderosaP. menziesii forests, though they have had a greater long-term influence on riparian understories, where these activities were likely the most intense. This article was written and prepared by US Government employees on official time, and therefore it is in the public domain and not subject to copyright.  相似文献   

18.
We compare two successional models as guides for restoring native riparian understory species along a 160‐km stretch of the Sacramento River in California. In 2001 and 2007, we surveyed cover, frequency, and richness of native and exotic understory species in 15 sites planted (1989–1996) with overstory species to determine whether native understory species colonized naturally (passive relay floristics model). In 2007, we surveyed 20 additional sites (planted 1997–2003) in 14 of which understory species were planted (initial floristics model) to evaluate whether planting accelerated community recovery. We surveyed 10 remnant forests as references for successional trajectories. Mean cover and frequency of natives changed little over time in sites where they were not planted initially; increases in native cover in a few sites were primarily due to a single common species (Galium aparine). Species composition shifted from light‐demanding to shade‐adapted species, both exotic and native, in response to a doubling of overstory cover. Sites with high intensity understory plantings had greater cover and frequency of native understory species than unplanted sites, but were still low relative to reference forests. Light‐demanding natives (e.g., Artemisia douglasiana, Rubus ursinus, and grasses) established in sites where they were planted; however, a shade‐adapted species (Carex barbarae) did not survive well. Our research indicates that the passive relay floristics and the initial floristic composition approaches serve to restore a few common native understory species, but that planting species as site conditions become appropriate (active relay floristics model) will be needed to restore entire native understory communities.  相似文献   

19.
The replacement of native forests by Pinus radiata plantations modifies habitat availability and quality for wildlife, constituting a threat to species survival. However, the presence of understory in mature pine plantations minimizes the negative impacts of native forest replacement, rendering a secondary habitat for wildlife. Whether forest-dwelling species recolonize clear-felled areas pending on the spontaneous development of accompanying vegetation growing after harvesting is yet to be assessed. In this context, we analyze the abundance, movement and habitat selection of the endemic ground beetle Ceroglossus chilensis (Coleoptera: Carabidae) in an anthropic forest landscape consisting of native forest remnants, adult pine plantations (>?20 years) with a well-developed understory, and young (1–2 years) pine plantations with varying degrees of accompanying vegetation development. Particularly, we analyze the likelihood that C. chilensis would recolonize young pine plantations depending on the presence (>?70% cover) or the absence (<?20% cover) of this accompanying vegetation. C. chilensis shows a greater probability of selecting habitats with understory (pine plantations and native forest) and young plantations with accompanying vegetation (future understory) than habitats without such vegetation. Movement of C. chilensis also favors their permanence in habitats with understory vegetation, coinciding with higher abundances than in young pine plantations devoid of accompanying vegetation. Hence, the effect of clearcutting could be mitigated by allowing the development of accompanying vegetation into a future understory, which facilitates the recolonization of pine plantations and its use as secondary habitat for wildlife.  相似文献   

20.
Pollen and plant macrofossils from the Keystone Ironbog are used to document changes in species composition and the dynamics of the subalpine forest in western Colorado over the past 8000 years. Modern pollen spectra (particularly pollen influx), plant macrofossils, observations on modern species composition, and quantified densities and mean basal areas of forest trees are used to interpret the paleoecology of the forest. From 8000 to 2600 years ago the fen was surrounded by a subalpine forest. However, unlike the modern subalpine forest where Abies lasiocarpa (Hooker) Nuttall is slighlty more abundant than Picea engelmannii (Parry) Engelmann, these Holocene forests had a greater dominance of P. engelmannii , perhaps reflecting a summer wet climate like that of the modern southern Rocky Mountains and Colorado Plateau. Mesic conditions promoted a dense understory of Sphagnum moss, forbs, grasses, and shrubs which periodically burned with long (centennial) return-interval and stand-replacing fires. Populus tremuloides Michaux was the dominant successional forest tree 8000–6400 and 4400–2600 years ago, with Picea engelmannii and Abies lasiocarpa becoming reestablished within a couple hundred years. A subalpine meadow or grassland covered the fen for about 2000 years between 6400 and 4400 years ago. Over the past 2600 years a stable, non-successional Pinus contorta (Douglas) spp latifolia (Engelmann) Critchfield forest grew around the fen. This forest stand had a relatively sparse understory. The persistence of Pinus contorta at this elevation (2920 m) probably reflects a shift to drier climatic conditions, perhaps coupled with a change in fire regime to relatively frequent (decadal) surface fires. Following fire Pinus contorta became reestablished at least within 200 years, but the subalpine Picea engelmannii-Abies lasiocarpa forest never regenerated at this elevation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号