首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Polyamines, ubiquitous polycationic compounds, are involved in many cellular responses and relieve paraquat-induced cytotoxicity inEscherichia coli. We constructed a newE. coli mutant strain, JIL528, which is deficient in the biosynthesis of both putrescine and spermidine, to examine the physiological role of polyamines under oxidative stress caused by paraquat. Putrescine and spermidine downregulate the expression ofsoxS induced by paraquat in a concentration-dependent manner. The product of SoxS is a key regulator governing cellular responses against oxidative stress inE. coli. The downregulation ofsoxS expression by polyamines was not shown in thesoxR mutant background. Glucose-6-phosphate dehydrogenase (G6PDH; encoded byzwf) and manganese-containing superoxide dismutase (Mn-SOD; encoded bysodA) activities induced by paraquat were decreased by exogenous polyamines. The induction of thezwf expression by paraquat was also decreased by exogenous polyamines. The polyamine-deficient mutant strain JIL528 showed a highersoxS expression than its parent polyamine-proficient wild type BW1157, on exogenous supplementation of paraquat concentrations below 1 mol/L. While the growth rate of the mutant was decreased,soxS expression was increased in a concentration-dependent manner above 0.01 mol/L of paraquat. In contrast, growth inhibition of the mutant by paraquat was relieved, andsoxS was no longer induced by exogenous putrescine (1 mmol/L). In conclusion, polyamines protect against paraquat-induced toxicity but downregulatesoxS expression, suggesting that the protective role of polyamines against oxidative damage induced by paraquat results insoxS downregulation.  相似文献   

2.
3.
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. The oxyR gene product regulates the expression of enzymes and proteins that are needed for cellular protection against oxidative stress. Upon exposure to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the Escherichia coli oxyR overexpression mutant was much more resistant to lipid peroxidation-mediated cellular damage, when compared to the OxyR deletion mutant in regard to growth kinetics, viability, and DNA damage. The deletion of the OxyR gene in E. coli also resulted in increased susceptibility of superoxide dismutase to lipid peroxidation-mediated inactivation. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in free radical-induced cellular damage. Also, the oxyR regulon plays an important protective role in lipid peroxidation-mediated cellular damage.  相似文献   

4.
5.
6.
7.
The mal regulon of Escherichia coli comprises a large family of genes whose function is the metabolism of linear maltooligosaccharides. Five gene products are required for the active accumulation of maltodextrins as large as maltoheptaose. Two cytoplasmic gene products are necessary and sufficient for the intracellular catabolism of these sugars. Two newly discovered enzymes have the capacity to metabolize these sugars but are not essential for their catabolism in wild-type cells. A single regulatory protein, MalT, positively regulates the expression of all of these genes in response to intracellular inducers, one of which has been identified as maltotriose. In the course of studying the mechanism of the transport system, we have placed the structural gene for one of the transport proteins, MalK, under the control of the Ptrc promoter to produce large amounts of this protein. We found that although high-level expression of MalK was not detrimental to E. coli, the increased amount of MalK decreased the basal-level expression of the mal regulon and prevented induction of the mal system even in the presence of external maltooligosaccharides. Constitutive mutants in which MalT does not depend on the presence of the internal inducer(s) were unaffected by the increased levels of the MalK protein. These results are consistent with the idea that MalK protein somehow interferes with the activity of the MalT protein. Different models for the regulatory function of MalK are discussed.  相似文献   

8.
9.
Activity of enzymes of polyamine synthesis and contents of their products increased in E. coli cells in response to oxidative stress caused by addition of hydrogen peroxide to an exponentially growing culture. Putrescine and spermidine added to the culture medium in physiological concentrations significantly increased expression of genes oxyR and katG responsible for defense against oxidative stress, whereas cadaverine had no effect. The role of polyamines as modulators of the gene expression was confirmed by experiments with an inhibitor of polyamine synthesis, 1,3-diaminopropane, which decreased the level of cell polyamines and thus abolished the ability of the cell to induce oxyR expression under oxidative stress. A genetic method gave similar results: under oxidative stress mutants with disorders in polyamine synthesis displayed a significantly decreased level of induction of the oxyR and katG genes, and this level was recovered on addition of putrescine. In the presence of inhibitors of DNA-gyrase, nalidixic acid and novobiocin, the oxyR expression depended on the extent of DNA supercoiling. Putrescine decreased the inhibitory effects of nalidixic acid and novobiocin, and this confirmed its properties of a stimulator of DNA supercoiling. Resistance to rifampicin was studied to exemplify the mutation rate under oxidative stress. Putrescine decreased twofold the level of mutations and increased the number of viable cells in the culture exposed to oxidative stress.  相似文献   

10.
11.
12.
13.
14.
The high-temperature production (HTP) regulon of Escherichia coli consists of a set of operons that are induced coordinately by a shift to a high temperature under the control of a single chromosomal gene called htpR or hin. To identify more components of this regulon, the rates of synthesis of many polypeptides resolved on two-dimensional polyacrylamide gels were measured in various strains by pulse-labeling after a temperature shift-up. A total of 13 polypeptides were found to be heat inducible only in cells bearing a normal htpR gene on the chromosome or on a plasmid; on this basis these polypeptides were designated products of the HTP regulon. Several hybrid plasmids that contain segments of the E. coli chromosome in the 75-min region were found to carry the htpR gene. A restriction map of this region was constructed, and selected fragments were subcloned and tested for the ability to complement an htpR mutant. The polypeptides encoded by these fragments were detected by permitting expression in maxicells, minicells, and chloramphenicol-treated cells. Complementation was accompanied by production of a polypeptide having a molecular weight of approximately 33,000. This polypeptide, designated F33.4, was markedly reduced in amount in an htpR mutant expected to contain very little htpR gene product. Polypeptide F33.4 is postulated to be the product of htpR and to be an effector that controls heat induction of the HTP regulon.  相似文献   

15.
Summary Treatment of Escherichia coli and Salmonella typhimurium cells with a low dose of hydrogen peroxide induces expression of a large number of genes, and confers resistance to oxidative stresses. The oxyR gene encodes a positive regulatory protein for a subset of these genes involved in the defense against oxidative damage. We cloned a DNA fragment that contains the E. coli oxyR region on a plasmid vector, and analyzed the nucleotide sequence of the gene. The amino acid sequence of OxyR protein, deduced from the nucleotide sequence, shows a high degree of homology to the sequences of a number of bacterial activator proteins including LysR, cysB, IlvY, MetR and NodD. The product of the oxyR gene identified by the maxicell procedure was a 34 kDa protein, which agrees with the size predicted from the nucleotide sequence of the gene.  相似文献   

16.
Sub-inhibitory mercury concentrations are capable of partially activating SoxR, as shown by the augmented expression of a soxS′::lacZ fusion, and a diminished sensitivity to antibiotics caused by mercury treatment. Mercury may elevate the intracellular concentration of superoxide or perhaps act as a putative metal ligand for SoxR.  相似文献   

17.
Leucine-responsive regulatory protein (Lrp) is a global regulatory protein that affects the expression of multiple genes and operons in bacteria. Although the physiological purpose of Lrp-mediated gene regulation remains unclear, it has been suggested that it functions to coordinate cellular metabolism with the nutritional state of the environment. The results of gene expression profiles between otherwise isogenic lrp(+) and lrp(-) strains of Escherichia coli support this suggestion. The newly discovered Lrp-regulated genes reported here are involved either in small molecule or macromolecule synthesis or degradation, or in small molecule transport and environmental stress responses. Although many of these regulatory effects are direct, others are indirect consequences of Lrp-mediated changes in the expression levels of other global regulatory proteins. Because computational methods to analyze and interpret high dimensional DNA microarray data are still an early stage, much of the emphasis of this work is directed toward the development of methods to identify differentially expressed genes with a high level of confidence. In particular, we describe a Bayesian statistical framework for a posterior estimate of the standard deviation of gene measurements based on a limited number of replications. We also describe an algorithm to compute a posterior estimate of differential expression for each gene based on the experiment-wide global false positive and false negative level for a DNA microarray data set. This allows the experimenter to compute posterior probabilities of differential expression for each individual differential gene expression measurement.  相似文献   

18.
19.
The purine regulon repressor, PurR, was identified as a component of the Escherichia coli regulatory system for pyrC, the gene that encodes dihydroorotase, an enzyme in de novo pyrimidine nucleotide synthesis. PurR binds to a pyrC control site that resembles a pur regulon operator and represses expression by twofold. Mutations that increase binding of PurR to the control site in vitro concomitantly increase in vivo regulation. There are completely independent mechanisms for regulation of pyrC by purine and pyrimidine nucleotides. Cross pathway regulation of pyrC by PurR may provide one mechanism to coordinate synthesis of purine and pyrimidine nucleotides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号