首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Background

Sodium-glucose cotransporter proteins (SGLT) belong to the SLC5A family, characterized by the cotransport of Na+ with solute. SGLT1 is responsible for intestinal glucose absorption. Until recently the only role described for SGLT proteins was to transport sugar with Na+. However, human SGLT3 (hSGLT3) does not transport sugar but causes depolarization of the plasma membrane when expressed in Xenopus oocytes. For this reason SGLT3 was suggested to be a sugar sensor rather than a transporter. Despite 70% amino acid identity between hSGLT3 and hSGLT1, their sugar transport, apparent sugar affinities, and sugar specificity differ greatly. Residue 457 is important for the function of SGLT1 and mutation at this position in hSGLT1 causes glucose-galactose malabsorption. Moreover, the crystal structure of vibrio SGLT reveals that the residue corresponding to 457 interacts directly with the sugar molecule. We thus wondered if this residue could account for some of the functional differences between SGLT1 and SGLT3.

Methodology/Principal Findings

We mutated the glutamate at position 457 in hSGLT3 to glutamine, the amino acid present in all SGLT1 proteins, and characterized the mutant. Surprisingly, we found that E457Q-hSGLT3 transported sugar, had the same stoichiometry as SGLT1, and that the sugar specificity and apparent affinities for most sugars were similar to hSGLT1. We also show that SGLT3 functions as a sugar sensor in a living organism. We expressed hSGLT3 and E457Q-hSGLT3 in C. elegans sensory neurons and found that animals sensed glucose in an hSGLT3-dependent manner.

Conclusions/Significance

In summary, we demonstrate that hSGLT3 functions as a sugar sensor in vivo and that mutating a single amino acid converts this sugar sensor into a sugar transporter similar to SGLT1.  相似文献   

2.
A series of 2-substituted C-aryl glucosides have been synthesized and evaluated for inhibition of hSGLT1 and hSGLT2. Introduction of an appropriate ortho substituent at the proximal phenyl ring adjacent to the glycosidic bond was found to improve SGLT2 inhibitory activity and dramatically increase selectivity for hSGLT2 over hSGLT1. Selected compounds were investigated for in vivo efficacy.  相似文献   

3.
Here, a series of C-glucosides with azulene rings in the aglycon moiety was synthesized and the inhibitory activities toward hSGLT1 and hSGLT2 were evaluated. Starting from the azulene derivative 7 which had relatively good SGLT2 inhibitory activity, compound 8a which has a 3-[(azulen-2-yl)methyl]phenyl group was identified as a lead compound for further optimization. Introduction of a phenolic hydroxyl group onto the central benzene ring afforded a potent and selective SGLT2 inhibitor 8e, which reduced blood glucose levels in a dose-dependent manner in rodent diabetic models. A mono choline salt of 8e (YM543) was selected as a clinical candidate for use in treating type 2 diabetes mellitus.  相似文献   

4.
Inhibition of renal sodium-dependent glucose cotransporter 2 (SGLT2) increases urinary glucose excretion (UGE), and thus reduces blood glucose levels in hyperglycemia. A series of N-glucosides was synthesized for biological evaluation as human SGLT2 (hSGLT2) inhibitors. Among these compounds, N-glucoside 9d possessing an indole core structure showed good in vitro activity (IC50 = 7.1 nM against hSGLT2). Furthermore, 9d exhibited favorable in vivo potency with regard to UGE in rats based on good pharmacokinetic profiles.  相似文献   

5.
C-Aryl 5a-carba-β-d-glucopyranose derivatives were synthesized and evaluated for inhibition activity against hSGLT1 and hSGLT2. Modifications to the substituents on the two benzene rings resulted in enhanced hSGLT2 inhibition activity and extremely high hSGLT2 selectivity versus SGLT1. Using the created superimposed model, the reason for the high hSGLT2 selectivity was speculated to be that additional substituents occupied a new space, in a different way than known inhibitors. Among the tested compounds, the ethoxy compound 5h with high hSGLT2 selectivity exhibited more potent and longer hypoglycemic action in db/db mice than our O-carbasugar compound (1) and sergliflozin (2), which could be explained by its improved PK profiles relative to those of the two compounds. These results indicated that 5h might be a promising drug candidate for the treatment of type 2 diabetes.  相似文献   

6.
Novel C-aryl-d-glucofuranosides were synthesized and evaluated for their capacity to inhibit human sodium-dependent glucose co-transporter 2 (hSGLT2) and hSGLT1. Compound 21q demonstrated the best in vitro inhibitory activity against SGLT2 in this series (EC50 = 0.62 μM).  相似文献   

7.
A new series of (2S,3R,4R,5S,6R)-5-fluoro-6-(hydroxymethyl)-2-aryltetrahydro-2H-pyran-3,4-diols as dual inhibitors of sodium glucose co-transporter proteins (SGLTs) were disclosed. Two methods were developed to efficiently synthesize C5-fluoro-lactones 3 and 4, which are key intermediates to the C5-fluoro-hexose based C-aryl glucosides. Compound 2b demonstrated potent hSGLT1 and hSGLT2 inhibition (IC50?=?43?nM for SGLT1 and IC50?=?9?nM for SGLT2). It showed robust inhibition of blood glucose excursion in oral glucose tolerance test (OGTT) in Sprague Dawley (SD) rats and exerted pronounced antihyperglycemic effects in db/db mice and high-fat diet-fed ZDF rats when dosed orally at 10?mg/kg.  相似文献   

8.
Sodium-dependent glucose co-transporter 2 (SGLT2) inhibition has been demonstrated to efficiently control hyperglycemia via an insulin secretion-independent pathway. The unique mode of action eliminates the risk of hypoglycemia and makes SGLT2 inhibitors an attractive option for the treatment of type 2 diabetes. In a continuation of our previous studies on SGLT2 inhibitors bearing different sugar moieties, sixteen new N-glucosyl indole derivatives were designed, synthesized, and evaluated for their inhibitory activity against hSGLT2. Of these sixteen, acethydrazide-containing N-glucosyl indole 9d was found to be the most potent SGLT2 inhibitor, and caused a significant elevation in urine glucose excretion in rats at 50 mg/kg, relative to the vehicle control.  相似文献   

9.
Human Na(+)-D-glucose cotransporter (hSGLT) inhibitors constitute the newest class of diabetes drugs, blocking up to 50% of renal glucose reabsorption in vivo. These drugs have potential for widespread use in the diabetes epidemic, but how they work at a molecular level is poorly understood. Here, we use electrophysiological methods to assess how they block Na(+)-D-glucose cotransporter SGLT1 and SGLT2 expressed in human embryonic kidney 293T (HEK-293T) cells and compared them to the classic SGLT inhibitor phlorizin. Dapagliflozin [(1S)-1,5,5-anhydro-1-C-{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl}-D-glucitol], two structural analogs, and the aglycones of phlorizin and dapagliflozin were investigated in detail. Dapagliflozin and fluoro-dapagliflozin [(1S)-1,5-anhydro-1-C-{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl}-4-F-4-deoxy-D-glucitol] blocked glucose transport and glucose-coupled currents with ≈100-fold specificity for hSGLT2 (K(i) = 6 nM) over hSGLT1 (K(i) = 400 nM). As galactose is a poor substrate for SGLT2, it was surprising that galacto-dapagliflozin [(1S)-1,5-anhydro-1-C-{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl}-D-galactitol] was a selective inhibitor of hSGLT2, but was less potent than dapagliflozin for both transporters (hSGLT2 K(i) = 25 nM, hSGLT1 K(i) = 25,000 nM). Phlorizin and galacto-dapagliflozin rapidly dissociated from SGLT2 [half-time off rate (t(1/2,Off)) ≈ 20-30 s], while dapagliflozin and fluoro-dapagliflozin dissociated from hSGLT2 at a rate 10-fold slower (t(1/2,Off) ≥ 180 s). Phlorizin was unable to exchange with dapagliflozin bound to hSGLT2. In contrast, dapagliflozin, fluoro-dapagliflozin, and galacto-dapagliflozin dissociated quickly from hSGLT1 (t(1/2,Off) = 1-2 s), and phlorizin readily exchanged with dapagliflozin bound to hSGLT1. The aglycones of phlorizin and dapagliflozin were poor inhibitors of both hSGLT2 and hSGLT1 with K(i) values > 100 μM. These results show that inhibitor binding to SGLTs is composed of two synergistic forces: sugar binding to the glucose site, which is not rigid, and so different sugars will change the orientation of the aglycone in the access vestibule; and the binding of the aglycone affects the binding affinity of the entire inhibitor. Therefore, the pharmacophore must include variations in both the structure of the sugar and the aglycone.  相似文献   

10.
Glycosides of arylnaphthalene lignans having axial chirality were isolated from Acanthus mollis. Owing to the axial chirality, their structure, including absolute configuration, was determined by means of extensive spectroscopic data such as UV, IR, MS, 1D and 2D NMR spectra, and computational chiroptical methods. A compound, 2′,4-dihydroxyretrohelioxanthin (2′-hydroxy-justirumalin), has a structure containing two aromatic moieties with substituents hindering rotation about the biaryl axis. The aglycone was connected to a saccharide moiety linked at C-4 or C-2′ and made up of one or four sugars (rhamnose or quinovose, and tetrasaccharide 4-O-β-d-xylopyranosyl-(1′′′′′-6′′)-O-[β-d-rhamnopyranosyl-(1′′′′-3′′)]-O-β-d-apiofuranosyl-(1′′′′-2′′)-O-β-d-glucopyranoside and quinovose). Two mono- and one tetraglycoside gave positive results in the sea urchin eggs test (Paracentrotus lividus) of cytotoxicity and in a crown gall tumor on potato disks test (Agrobacterium tumefaciens).  相似文献   

11.
The solution-state structure of 2′-O-(2-methoxyethly) substituted dodecamer r(*CG*CGAA*U*U*CG*C)d(G), 2′-MOE RNA, with all cytosines and uracils methylated at the C5-position has been determined by NMR spectroscopy. The chemical modifications were used to improve the oligonucleotide's drug-like properties. The 2′-MOE group drives pseudorotational equilibrium of the ribofuranose moiety to the N-type conformation and supposedly results in structural preorganization leading to high affinity of a modified oligonucleotide towards its complementary biological target, improved pharmacokinetic and toxicological properties. The high melting temperature of the antiparallel duplex structure adopted by 2′-MOE RNA was explained through the formation of a stable A-form RNA consistent with effective base-pairing and stacking interactions. The comparison of the solution-state structure with the crystal structure of a non-methylated analogue shows an increase in the stacking at the base pair steps for the C5-methylated 2′-MOE RNA duplex. The MOE substituents adopt a well-defined structure in the minor groove with the predominant gauche conformations around the ethylene bond.  相似文献   

12.
The carotenoids of 19 different strains of Nodularia spumigena and one Nodularia sphaerocarpa from different global locations were investigated. The molecular structure of the diagnostic pigment in N. spumigena of the Baltic Sea, tentatively named ‘4-keto-myxoxanthophyll-like pigment’ in Schlüter, L., Garde, K., Kaas, H., [2004. A 4-keto-myxoxanthophyll-like pigment is a diagnostic pigment for the toxic cyanobacteria Nodularia spumigena in the Baltic Sea. Mar. Ecol. Prog. Ser. 275, 69–78.] was determined to be a 4-ketomyxol-2′-fucoside. In most of the strains an additional carotenoid was found, identified as the novel 1′-O-methyl-4-ketomyxol-2′-fucoside by 2D NMR. This glycosidic carotenoid methyl ether was found to be a more important diagnostic pigment than the 4-ketomyxol-2′-fucoside for the toxic N. spumigena in the Baltic Sea. Out of the 20 strains 15 were found to produce the hepatotoxin nodularin. The content of carotenoids and nodularin was found to increase relative to chlorophyll a at increasing light intensity and at stationary growth, and nodularin was significantly correlated to both 4-ketomyxol-2′-fucoside and 1′-O-methyl-4-ketomyxol-2′-fucoside, and particular to the sum of these two pigments.  相似文献   

13.
Kumar A  Tyagi NK  Goyal P  Pandey D  Siess W  Kinne RK 《Biochemistry》2007,46(10):2758-2766
Although there is no evidence of significant Na-independent glucose flux in tissues naturally expressing SGLT1, previous kinetic and biophysical studies suggest that sodium/d-glucose cotransporter 1 (hSGLT1) can facilitate sodium-independent d-glucose transport and may contain more than one sugar binding site. In this work, we analyze the kinetic properties and conformational states of isolated hSGLT1 reconstituted in liposomes by transport and fluorescence studies in the absence of sodium. In the transport studies with hSGLT1, significant sodium-independent phlorizin inhibitable alpha-methyl d-glucopyranoside (alpha-MDG) uptake was observed which amounted to approximately 20% of the uptake observed in the presence of a sodium gradient. The apparent affinity constant for alpha-MDG was thereby 3.4 +/- 0.5 mM, a value approximately 10-fold higher than that in the presence of sodium. In the absence of sodium, various sugars significantly decreased the intrinsic Trp fluorescence of hSGLT1 in proteoliposomes exhibiting the following sequence of affinities: alpha-MDG > d-glucose approximately d-galactose > 6-deoxy-d-glucose > 2-deoxy-d-glucose > d-allose. Furthermore, significant protection effects of d-glucose or phlorizin against potassium iodide, acrylamide, or trichloroethanol quenching were observed. To locate the Trps involved in this reaction, we generated mutants in which all Trps were sequentially substituted with Phe. None of the replacements significantly affected sodium-dependent uptake. Uptake in the absence of sodium and typical fluorescence changes depended, however, on the presence of Trp at position 561. This Trp residue is conserved in all known SGLT1 forms (except Vibrio parahaemolyticus SGLT) and all SGLT isoforms in humans (except hSGLT3). If all these data are taken into consideration, it seems that Trp-561 in hSGLT1 forms part of a low-affinity sodium-independent binding and/or translocation site for d-glucose. The rate of sodium-independent translocation via hSGLT1 seems, however, to be tightly regulated in the intact cell by yet unknown factors.  相似文献   

14.
Two series of O-spiro C-aryl glucosides were synthesized and tested for inhibition of hSGLT1 and hSGLT2. 6′-O-Spiro C-aryl glucosides exhibited potent in vitro hSGLT2 inhibitory activity but 2′-O-spiro C-aryl glucosides showed no in vitro hSGLT2 inhibitory activity at a screening concentration of 1 μM.  相似文献   

15.
The human Na(+)-glucose cotransporter SGLT2 is expressed mainly in the kidney proximal convoluted tubule where it is considered to be responsible for the bulk of glucose reabsorption. Phosphorylation profiling has revealed that SGLT2 exists in a phosphorylated state in the rat renal proximal tubule cortex, so we decided to investigate the regulation of human SGLT2 (hSGLT2) by protein kinases. hSGLT2 was expressed in human embryonic kidney (HEK) 293T cells, and the activity of the protein was measured using radiotracer and whole cell patch-clamp electrophysiology assays before and after activation of protein kinases. 8-Bromo-adenosine cAMP (8-Br-cAMP) was used to activate protein kinase A, and sn-1,2-dioctanoylglycerol (DOG) was used to activate protein kinase C (PKC). 8-Br-cAMP stimulated D-[α-methyl-(14)C]glucopyranoside ([(14)C]α-MDG) uptake and Na(+)-glucose currents by 200% and DOG increased [(14)C]α-MDG uptake and Na(+)-glucose currents by 50%. In both cases the increase in SGLT2 activity was marked by an increase in the maximum rate of transport with no change in glucose affinity. These effects were completely negated by mutation of serine 624 to alanine. Insulin induced a 250% increase in Na(+)-glucose transport by wild-type but not S624A SGLT2. Parallel studies confirmed that the activity of hSGLT1 was regulated by PKA and PKC due to changes in the number of transporters in the cell membrane. hSGLT1 was relatively insensitive to insulin. We conclude that hSGLT1 and hSGLT2 are regulated by different mechanisms and suggest that insulin is an SGLT2 agonist in vivo.  相似文献   

16.
A genomic DNA fragment with carotenogenic genes involved in myxol biosynthesis (3′,4′-didehydro-1′,2′-dihydro-β,ψ-carotene-3,1′,2′-triol) was cloned from Flavobacterium P99-3. It contains a gene highly homologous to crtA from purple bacteria encoding there an acyclic carotenoid 2-ketolase. Since no ketolation step is involved in myxol biosynthesis, the function of crtA-OH from Flavobacterium was assigned by complementation in Escherichia coli engineered to synthesize demethylspheroidene and 1′-hydroxy-demethylspheroidene. Upon co-expression of crtA-OH, the formation of 2-hydroxy derivatives of both carotenoids assigns CrtA-OH as a novel carotenoid hydroxylase. The gene was used to re-construct myxol biosynthesis in E. coli successfully. Additionally, 1′,2′-dihydroxytorulene and 1,2,1′-trihydroxy-3,4,3′,4′-tetradehydrolycopene were obtained. Their generation demonstrates that a new class of 2-hydroxy carotenoids can now be pursued by genetic engineering in E. coli.  相似文献   

17.
Novel macrocyclic C-aryl glucoside SGLT2 inhibitors were designed and synthesized. Two different synthetic routes of macrocyclization were adopted to prepare novel ansa SGLT2 inhibitors. Among the compounds tested, [1,7]dioxacyclopentadecine macrocycles possessing methylthiophenyl at the distal ring 40 or ethoxyphenyl at the distal ring 23 showed the best in vitro inhibitory activity in this series to date (40, IC(50)=0.778 nM and 23, IC(50)=0.899 nM) against hSGLT2.  相似文献   

18.
Using cotransporters as drug delivery vehicles is a topic of continuing interest. We examined glucose derivatives containing conjugated aromatic rings using two isoforms of the Na+/glucose cotransporter: human SGLT1 (hSGLT1) and pig SGLT3 (pSGLT3, SAAT1). Our studies indicate that there is similarity between SGLT1 and SGLT3 in the overall architecture of the vestibule leading to the sugar-binding site but differences in translocation pathway interactions. Indican was transported by hSGLT1 with higher affinity (K0.5 0.06 mm) and 2-naphthylglucose with lower affinity (K0.5 0.5 mm) than α-methyl-d-glucopyranoside (αMDG, 0.2 mm). Both were poorly transported (maximal velocities, I max , 14% and 8% of αMDG). Other compounds were inhibitors (K i s 1–13 mm). In pSGLT3, indican and 2-naphthylglucose were transported with higher affinity than αMDG (K0.5s 0.9, 0.2 and 2.5 mm and relative I max s of 80, 25 and 100%). Phenylglucose and arbutin were transported with higher I max s (130 and 120%) and comparable K0.5s (8 and 1 mm). Increased affinity of indican relative to αMDG suggests that nitrogen in the pyrrole ring is favorable in both transporters. Higher affinity of 2-naphthylglucose for pSGLT3 than hSGLT1 suggests more extensive hydrophobic/aromatic interaction in pSGLT3 than in hSGLT1. Our results indicate that bulky hydrophobic glucosides can be transported by hSGLT1 and pSGLT3, and discrimination between them is based on steric factors and requirements for H-bonding. This provides information for design of glycosides with potential therapeutic value. Received: 18 February 2000/Revised: 13 April 2000  相似文献   

19.
Structure–activity relationships of 2-alkynyladenine derivatives were explored by varying substituents at the 9-, 8- and 2-positions of the purine moiety in order to optimize A2A adenosine receptor antagonist activity in vitro. A propargyl group at the 9-position was found to be important for A2A antagonist activity, and the introduction of a halogen, aryl, or heteroaryl at the 8-position further enhanced activity. A series of 8-substituted 2-alkynyl-N9-propargyladenine derivatives exhibited potent antagonist activity, with IC50 values in the low nM range. Compound 4a from this series was found to be orally active at a dose of 3 mg/kg in a mouse catalepsy model and a 6-hydroxydopamine-lesioned rat model of Parkinson’s disease.  相似文献   

20.
《Endocrine practice》2023,29(7):509-516
ObjectiveThe cardiovascular (CV) and renal benefits of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in people with type 2 diabetes are well known. However, similar beneficial effects of SGLT2i in combination with dipeptidyl peptidase-4 inhibitors (DPP4i) are unknown. It is of interest to explore a trial-level meta-analysis to fill this knowledge gap.MethodsA literature search was conducted in the PubMed and Embase databases until January 31, 2023. All CV outcome trials (CVOTs) reporting the CV and renal outcomes of SGLT2i with or without background DPP4i therapy against the placebo were retrieved. A meta-analysis was subsequently conducted by applying the inverse variance-weighted averages of pooled logarithmic hazard ratio using primarily random-effects analysis.ResultsThis meta-analysis showed that the beneficial 3-point major adverse cardiovascular events composite (3 CVOTs; N = 32 418), the composite of CV death or heart failure hospitalization (hHF) (4 CVOTs; N = 37 687), hHF (3 CVOTs; N = 27 545), CV death (4 CVOTs; N = 34 565), and renal outcomes (2 CVOTs; N = 25 406) with SGLT2i were similar with or without background DPP4i therapy against the placebo (Pheterogeneity = .71, .07, .87, .72, and .25; respectively). However, against the placebo, the summary estimates for the 3-point major adverse cardiovascular events composite, hHF, and renal outcomes were stronger with SGLT2i alone, whereas the summary estimates for CV death or hHF composite were larger with SGLT2i with background DPP4i therapy.ConclusionBeneficial CV and renal effects of SGLT2i are similar against the placebo regardless of background DPP4i therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号