首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteosarcoma is a highly invasive primary malignancy of bone. Magnolol is biologically active, which shows antitumor effects in a variety of cancer cell lines. However, it has not been elucidated magnolol's effects on human osteosarcoma cells (HOC). This study aimed to determine antitumor activity of magnolol and illustrate the molecular mechanism in HOC. Magnolol showed significant inhibition effect of growth on MG-63 and 143B cells and induced apoptosis and cell cycle arrest at G0/G1. In osteosarcoma cells, magnolol upregulated expressions of proapoptosis proteins and suppressed expressions of antiapoptosis proteins. Additionally, under the pretreatment of pifithrin-a (PFT-a, a p53 inhibitor), the magnolol-induced apoptosis was significantly reversed. The results above indicated that magnolol induces apoptosis in osteosarcoma cells may via G0/G1 phase arrest and p53-mediated mitochondrial pathway.  相似文献   

2.
3.
We observed that treatment of prostate cancer cells for 24 h with magnolol, a phenolic component extracted from the root and stem bark of the oriental herb Magnolia officinalis, induced apoptotic cell death in a dose‐ and time‐dependent manner. A sustained inhibition of the major survival signal, Akt, occurred in magnolol‐treated cells. Treatment of PC‐3 cells with an apoptosis‐inducing concentration of magnolol (60 µM) resulted in a rapid decrease in the level of phosphorylated Akt leading to inhibition of its kinase activity. Magnolol treatment (60 µM) also caused a decrease in Ser(136) phosphorylation of Bad (a proapoptotic protein), which is a downstream target of Akt. Protein interaction assay revealed that Bcl‐xL, an anti‐apoptotic protein, was associated with Bad during treatment with magnolol. We also observed that during treatment with magnolol, translocation of Bax to the mitochondrial membrane occurred and the translocation was accompanied by cytochrome c release, and cleavage of procaspase‐8, ‐9, ‐3, and poly(ADP‐ribose) polymerase (PARP). Similar results were observed in human colon cancer HCT116Bax+/? cell line, but not HCT116Bax?/? cell line. Interestingly, at similar concentrations (60 µM), magnolol treatment did not affect the viability of normal human prostate epithelial cell (PrEC) line. We also observed that apoptotic cell death by magnolol was associated with significant inhibition of pEGFR, pPI3K, and pAkt. These results suggest that one of the mechanisms of the apoptotic activity of magnolol involves its effect on epidermal growth factor receptor (EGFR)‐mediated signaling transduction pathways. J. Cell. Biochem. 106: 1113–1122, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
5.
6.
The neolignans, magnolol 1 and honokiol 2 have been reported to inhibit the growth of several tumor cell lines in vitro and in vivo. The chemical structure of magnolol and honokiol consists of biphenyl skeleton with phenolic and allylic functionalities. Analogs of 1 and 2 containing different substitution have been studies for their effect on the growth of Hep-G2 and their structure-activity relationships were reported in this work.  相似文献   

7.
To control the fish fungal pathogen Saprolegnia, the effects of the petroleum ether extracts of Magnolia officinalis were evaluated by a rapeseed (Brassicanapus) microplate method in vitro. By loading on an open silica gel column and eluting with petroleum ether-ethyl acetate-methanol, honokiol (C18H18O2) and magnolol (C18H18O2) were isolated from Magnolia officinalis. Saprolegnia parasitica growth was inhibited significantly when honokiol concentration was >8.0?mg/L, and magnolol concentration was >9.0?mg/L, with EC50 values of 4.38 and 4.92?mg/L, respectively. Six honokiol and magnolol derivatives were designed, synthesized and evaluated for their anti-Saprolegnia activity. According to the results, double bond and hydroxyl played an important role in inhibiting Saprolegnia. Mechanistically, through the scanning electron microscope observation, honokiol and magnolol could cause the Saprolegnia parasitica mycelium tegumental damage including intensive wrinkles and nodular structures. Moreover, compared to traditional drugs kresoxim-methyl (LC50?=?0.66?mg/L) and azoxystrobin (LC50?=?2.71?mg/L), honokiol and magnolol showed a lower detrimental effect on zebrafish, with the LC50 values of 6.00 and 7.28?mg/L at 48?h, respectively. Overall, honokiol and magnolol were promising lead compounds for the development of commercial drugs anti-Saprolegnia.  相似文献   

8.
The antinociceptive effects of honokiol and magnolol, two major bioactive constituents of the bark of Magnolia officinalis, were investigated on animal paw licking responses and thermal hyperalgesia induced by glutamate receptor agonists including glutamate, N-methyl-D-aspartate (NMDA), and metabotropic glutamate 5 receptor (mGluR5) activator (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), as well as inflammatory mediators such as substance P and prostaglandin E2 (PGE2) in mice. The actions of honokiol and magnolol on glutamate-induced c-Fos expression in the spinal cord dorsal horn were also examined. Our data showed that honokiol and magnolol blocked glutamate-, substance P- and PGE2-induced inflammatory pain with similar potency and efficacy. Consistently, honokiol and magnolol significantly decreased glutamate-induced c-Fos protein expression in superficial (I-II) laminae of the L4-L5 lumbar dorsal horn. However, honokiol was more selective than magnolol for inhibition of NMDA-induced licking behavioral and thermal hyperalgesia. In contrast, magnolol was more potent to block CHPG-mediated thermal hyperalgesia. These results demonstrate that honokiol and magnolol effectively decreased the inflammatory pain. Furthermore, their different potency on inhibition of nociception provoked by NMDA receptor and mGluR5 activation should be considered.  相似文献   

9.
Chemical control of protein secretion using a small molecule approach provides a powerful tool to optimize tissue engineering strategies by regulating the spatial and temporal dimensions that are exposed to a specific protein. We placed fibroblast growth factor 2 (FGF-2) under conditional control of a small molecule and demonstrated greater than 50-fold regulation of FGF-2 release as well as tunability, reversibility, and functionality in vitro. We then applied conditional control of FGF-2 secretion to a cell-based, skeletal tissue engineering construct consisting of adipose stem cells (ASCs) on a biomimetic scaffold to promote bone formation in a murine critical-sized calvarial defect model. ASCs are an easily harvested and abundant source of postnatal multipotent cells and have previously been demonstrated to regenerate bone in critical-sized defects. These results suggest that chemically controlled FGF-2 secretion can significantly increase bone formation by ASCs in vivo. This study represents a novel approach toward refining protein delivery for tissue engineering applications.  相似文献   

10.
Aims:  To characterize antifungal principles from the methanol extract of Magnolia obovata and to evaluate their antifungal activities against various plant pathogenic fungi.
Methods and Results:  Four neolignans were isolated from stem bark of M. obovata as antifungal principles and identified as magnolol, honokiol, 4-methoxyhonokiol and obovatol. In mycelial growth inhibition assay, both magnolol and honokiol displayed more potent antifungal activity than 4-methoxyhonokiol and obovatol. Both magnolol and honokiol showed similar in vivo antifungal spectrum against seven plant diseases tested; both compounds effectively suppressed the development of rice blast, tomato late blight, wheat leaf rust and red pepper anthracnose. 4-Methoxyhonokiol and obovatol were highly active to only rice blast and wheat leaf rust respectively.
Conclusions:  The extract of M. obovata and four neolignans had potent in vivo antifungal activities against plant pathogenic fungi.
Significance and Impact of the Study:  Neolignans from Magnolia spp. can be used and suggested as a novel antifungal lead compound for the development of new fungicide and directly as a natural fungicide for the control of plant diseases such as rice blast and wheat leaf rust.  相似文献   

11.
12.
This study investigated the effect of magnolol, a compound isolated from Magnolia officinalis, on lipolysis in lipid-laden RAW 264.7 macrophages. Treatment of macrophages with magnolol led to dissolution of lipid droplets. This phenomenon was accompanied by a dose-dependent release of glycerol and cholesterol and a concomitant reduction in intracellular levels of glycerol and cholesterol. Furthermore, adipose differentiation-related protein (ADRP), a lipid droplet-associated protein, was down-regulated by magnolol in a dose- and time-dependent manner by Western blot analysis. Immunofluorescence studies also showed that ADRP became detached from the surface of lipid droplets after magnolol treatment. The lipolytic effect of magnolol was not mediated through the cAMP-protein kinase A (PKA) system, an authentic lipolytic pathway for macrophages, since magnolol did not induce an increase of intracellular cAMP levels, and pretreatment with either of PKA inhibitors, PKI and KT5720, did not abrogate the lipolytic response to magnolol. We conclude that magnolol induce-lipolysis of lipid-laden macrophages by down-regulation of ADRP expression and detachment of ADRP from the lipid droplet surface by a cAMP-independent mechanism. Lipolysis of lipid-laden macrophages may occur when the amount of ADRP on the surface of lipid droplets is not enough to stabilize the lipid droplets.  相似文献   

13.
Magnolia officinalis has been widely used in traditional Chinese medicine. Magnolol, an active component isolated from Magnolia officinalis, is known to be a cardiovascular protector since 1994. The multiplex mechanisms of magnolol on cardiovascular protection depends on cell types and dosages, and will be reviewed and discussed in this article. Magnolol under low and moderate dosage possesses the ability to protect heart from ischemic/reperfusion injury, reduces atherosclerotic change, protects endothelial cell against apoptosis and inhibits neutrophil-endothelial adhesion. The moderate to high concentration of magnolol mainly acts on smooth muscle cells and platelets. Magnolol induces apoptosis in vascular smooth muscle cells at moderate concentration and inhibits proliferation at moderate and high concentration. High concentration of magnolol also abrogates platelet activation, aggregation and thrombus formation. Magnolol also serves as an smooth muscle relaxant only upon the high concentration. Oral intake of magnolol to reach the therapeutic level for cardiovascular protection is applicable, thus makes magnolol an agent of great potential for preventing cardiovascular diseases in high-risk patients.  相似文献   

14.
15.
WT Lee  MH Lin  EJ Lee  YC Hung  SH Tai  HY Chen  TY Chen  TS Wu 《PloS one》2012,7(7):e39952
Neuroprotective efficacy of magnolol, 5,5'-dially-2,2'-dihydroxydiphenyl, was investigated in a model of stroke and cultured neurons exposed to glutamate-induced excitotoxicity. Rats were subjected to permanent middle cerebral artery occlusion (pMCAO). Magnolol or vehicle was administered intraperitoneally, at 1 hr pre-insult or 1-6 hrs post-insult. Brain infarction was measured upon sacrifice. Relative to controls, animals pre-treated with magnolol (50-200 mg/kg) had significant infarct volume reductions by 30.9-37.8% and improved neurobehavioral outcomes (P<0.05, respectively). Delayed treatment with magnolol (100 mg/kg) also protected against ischemic brain damage and improved neurobehavioral scores, even when administered up to 4 hrs post-insult (P<0.05, respectively). Additionally, magnolol (0.1 μM) effectively attenuated the rises of intracellular Ca(2+) levels, [Ca(2+)](i), in cultured neurons exposed to glutamate. Consequently, magnolol (0.1-1 μM) significantly attenuated glutamate-induced cytotoxicity and cell swelling (P<0.05). Thus, magnolol offers neuroprotection against permanent focal cerebral ischemia with a therapeutic window of 4 hrs. This neuroprotection may be, partly, mediated by its ability to limit the glutamate-induced excitotoxicity.  相似文献   

16.
MK──一种新发现的细胞因子   总被引:1,自引:0,他引:1  
MK是一种新发现的细胞因子,属于肝素结合因子家族,MK是一种小分子多肽,其基因表达仅见于胚胎中期及成年期肾脏,在许多肿瘤细胞中也可见MK基因不同程度的表达,MK能够促进正常细胞的生长和分化,特别是促进神经细胞的发育,它还可以抑制某些肿瘤细胞的生长.MK基因在成年肾脏中表达的原因尚未阐明.  相似文献   

17.
BackgroundIncreased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration.MethodsThe proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury.ResultsVSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity.ConclusionsMagnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation.General significanceThis study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis.  相似文献   

18.
Lin YR  Chen HH  Ko CH  Chan MH 《Life sciences》2007,81(13):1071-1078
The antinociceptive actions of honokiol and magnolol, two major bioactive constituents of the bark of Magnolia officinalis, were evaluated using tail-flick, hot-plate and formalin tests in mice. The effects of honokiol and magnolol on the formalin-induced c-Fos expression in the spinal cord dorsal horn as well as motor coordination and cognitive function were examined. Data showed that honokiol and magnolol did not produce analgesia in tail-flick, hot-plate paw-shaking and neurogenic phase of the overt nociception induced by intraplantar injection of formalin. However, honokiol and magnolol reduced the inflammatory phase of formalin-induced licking response. Consistently, honokiol and magnolol significantly decreased formalin-induced c-Fos protein expression in superficial (I-II) laminae of the L4-L5 lumbar dorsal horn. However, honokiol and magnolol did not elicit motor incoordination and memory dysfunction at doses higher than the analgesic dose. These results demonstrate that honokiol and magnolol effectively alleviate the formalin-induced inflammatory pain without motor and cognitive side effects, suggesting their therapeutic potential in the treatment of inflammatory pain.  相似文献   

19.
Emerging clinical and pre-clinical data indicate that both insulin-like growth factor receptor (IGF-IR) and members of the epidermal growth factor (EGF) family of receptor tyrosine kinases (RTKs) exhibit significant cross-talk in human cancers. Therefore, a small molecule that successfully inhibits the signaling of both classes of oncogenic kinases might provide an attractive agent for chemotherapeutic use. Herein, we disclose the structure activity relationships that led to the synthesis and biological characterization of 14, a novel small molecule inhibitor of both IGF-IR and members of the epidermal growth factor family of RTKs.  相似文献   

20.
《Phytomedicine》2013,21(14):1272-1279
This study aimed to investigate the effect of magnolol (5,5′-diallyl-2,2′-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca2+ currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3–100 μM). In the presence of Bay K8644 (100 nM), magnolol (10–100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-l-arginine methyl ester (l-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3–100 μM) inhibited the L-type Ca2+ currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca2+ channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号