首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophages play a central role in host immune responses against pathogens by acting as both professional phagocytic cells and as fully competent APCs. We report here that the LPS from the facultative intracellular Gram-negative bacteria Brucella abortus interferes with the MHC class II Ag presentation pathway. LPS inhibits the capacity of macrophages to present hen egg lysozyme (HEL) antigenic peptides to specific CD4(+) T cells but not those of OVA to specific CD8(+) T cells. This defect was neither related to a decrease of MHC class II surface expression nor to a deficient uptake or processing of HEL. In addition, B. abortus LPS did not prevent the formation of SDS-resistant MHC class II complexes induced by HEL peptides. At the cell surface of macrophages, we observed the presence of LPS macrodomains highly enriched in MHC class II molecules, which may be responsible for the significant down-regulation of CD4(+) T cell activation. This phenomenon may account for the avoidance of the immune system by certain bacterial pathogens and may explain the immunosuppression observed in individuals with chronic brucellosis.  相似文献   

2.
Escherichia coli express thin surface fimbriae called curli which bind soluble matrix proteins and major histocompatibility complex (MHC)-I molecules. The present study addressed the ability of purified curli or curliated E. coli to influence peptide presentation on MHC-I, T cell proliferation and bacterial uptake by macrophages. In vitro studies with curli-proficient E. coli YMel and the isogenic curli-deficient strain YMel-1, both expressing the model antigen Crl-OVA, showed that curli expression by E. coli does not appear to influence the efficiency by which the bacteria are processed by murine macrophages for OVA(257-264) presentation on K(b). Furthermore, curli expression by E. coli did not influence the binding of exogenously added OVA(257-264) peptide to K(b) on the surface of prefixed macrophages. In addition, neither curliated nor non-curliated heat-killed bacteria influenced proliferation of either murine or human T cells stimulated with anti-CD3. Finally, curliated E. coli adhered to and were internalized by macrophages from C57BL/6 and MHC-I-deficient TAP1(-/-) mice equally well. Together these studies show that curli expression by E. coli does not appear to influence phagocytic processing of bacteria expressing Crl-OVA for OVA(257-264)/K(b) presentation, the binding of exogenously added OVA(257-264) to K(b) or T cell proliferation. In addition, although curli expression by E. coli enhances bacterial interaction with macrophages, curli interaction with MHC-I does not significantly contribute to this adherence.  相似文献   

3.
APCs process mammalian heat shock protein (HSP):peptide complexes to present HSP-chaperoned peptides on class I MHC (MHC-I) molecules to CD8(+) T cells. HSPs are also expressed in prokaryotes and chaperone microbial peptides, but the ability of prokaryotic HSPs to contribute chaperoned peptides for Ag presentation is unknown. Our studies revealed that exogenous bacterial HSPs (Escherichia coli DnaK and Mycobacterium tuberculosis HSP70) delivered an extended OVA peptide for processing and MHC-I presentation by both murine macrophages and dendritic cells. HSP-enhanced MHC-I peptide presentation occurred only if peptide was complexed to the prokaryotic HSP and was dependent on CD91, establishing CD91 as a receptor for prokaryotic as well as mammalian HSPs. Inhibition of cytosolic processing mechanisms (e.g., by transporter for Ag presentation deficiency or brefeldin A) blocked HSP-enhanced peptide presentation in dendritic cells but not macrophages. Thus, prokaryotic HSPs deliver chaperoned peptide for alternate MHC-I Ag processing and cross-presentation via cytosolic mechanisms in dendritic cells and vacuolar mechanisms in macrophages. Prokaryotic HSPs are a potential source of microbial peptide Ags during phagocytic processing of bacteria during infection and could potentially be incorporated in vaccines to enhance presentation of peptides to CD8(+) T cells.  相似文献   

4.
Two viral epitopes (C3 neutralization epitope from poliovirus type 1 and the 132-145 peptide from the PreS2 region from hepatitis B virus) have been expressed in the Escherichia coli periplasm as protein fusion with the maltose binding protein (MalE protein). Immunization of mice with live bacteria expressing the foreign viral epitopes in their periplasm elicited high antibody titers against the viral peptide as well as against the corresponding virus. This demonstrates for the first time in the case of defined epitopes that, when live bacteria are used as immunogens, presentation at the cell surface is not a prerequisite to obtain an antibody response. On the other hand, the induction of antiviral antibody responses by these recombinant bacteria depended dramatically on the route of immunization: a response was induced by live bacteria through the i.v. route but not through the s.c. route. However, when bacteria were heat killed or when the MalE hybrid protein was released under a soluble form from the cell, a response was induced even upon s.c. immunization. From these results, we suggest that in order to induce high levels of antibodies by the s.c. route, a major parameter for bacterial Ag would be their capacity to be released into a soluble form before the interaction of the bacteria with the APC. This would permit the presentation by B cells rather than by phagocytic cells. Finally, we demonstrate that the route of immunization influences the isotypic distribution and the neutralizing activity of the antipoliovirus antibodies. Such results may have major implications for the development of bacterial vaccines based on fusion proteins.  相似文献   

5.
Peptides that are presented by class I MHC (MHC-I) molecules derive from cytosolic Ags processed via the conventional MHC-I pathway or exogenous Ags processed via alternate MHC-I processing mechanisms. Alternate MHC-I processing by macrophages and dendritic cells allows presentation of peptides from particulate Ags, including bacteria. Despite the established phagocytic activity of neutrophils, MHC-I processing and presentation of phagocytosed Ags by neutrophils has not been investigated. Murine neutrophils from peritoneal exudates were shown to express MHC-I molecules and tested for the ability to process HB101.Crl-OVA, Escherichia coli transfected to express a fusion protein containing the 257-264 epitope of OVA. Neutrophils were found to process HB101.Crl-OVA and present OVA(257-264)-K(b) complexes to CD8OVA T hybridoma cells via a pathway that was resistant to brefeldin A, an inhibitor of anterograde endoplasmic reticulum-Golgi transport, and lactacystin, a proteasome inhibitor. These results suggest that neutrophils process phagocytosed bacteria via a vacuolar alternate MHC-I pathway that does not involve cytosolic processing. In addition, neutrophils were found to secrete or "regurgitate" processed peptide that was subsequently presented by neighboring prefixed macrophages or dendritic cells. Thus, neutrophils may influence T cell responses to bacteria, either by directly presenting peptide-MHC-I complexes or by delivering peptides to other APCs for presentation. Hypothetically, neutrophils may directly present peptide to effector T cells in vivo at sites of inflammation, inducing cytokine production, whereas dendritic cells in receipt of neutrophil-derived antigenic peptides may migrate to lymphoid organs to initiate T cell responses.  相似文献   

6.
Vaccination against cancer or intracellular pathogens requires stimulation of class I-restricted CD8(+) T cells. It is therefore important to develop Ag delivery vectors that will promote cross-presentation by APCs and stimulate appropriate inflammatory responses. Toward this goal, we tested the potential of Escherichia coli as an Ag delivery vector in in vitro human culture. Bacteria expressing enhanced green fluorescent protein were internalized efficiently by dendritic cells, as shown by flow cytometry and fluorescence microscopy. Phenotypic changes in DC were observed, including up-regulation of costimulatory molecules and IL-12p40 production. We tested whether bacteria expressing recombinant Ags could stimulate human T cells using the influenza matrix protein as a model Ag. Specific responses against an immunodominant epitope were seen using IFN-gamma ELISPOT assays when the matrix protein was coexpressed with listeriolysin O, but not when expressed alone. THP-1 macrophages were also capable of stimulating T cells after uptake of bacteria, but showed slower kinetics and lower overall levels of T cell stimulation than dendritic cells. Increased phagocytosis of bacteria induced by differentiation of THP-1 increased their ability to stimulate T cells, as did opsonization. Presentation was blocked by proteasome inhibitors, but not by lysosomal protease inhibitors leupeptin and E64. These results demonstrate that recombinant E. coli can be engineered to direct Ags to the cytosol of human phagocytic APCs, and suggest possible vaccine strategies for generating CD8(+) T cell responses against pathogens or tumors.  相似文献   

7.
We have targeted two foreign B cell antigenic determinants to different locations in the Escherichia coli cell to examine what effect this had on antibody responses elicited by the recombinant bacteria. The two epitopes were the 132-145 peptide from the PreS2 region of hepatitis B virus and the C3 neutralization epitope of poliovirus type 1. They were each expressed in two forms either on the surface, as part of the outer-membrane protein LamB, or soluble in the periplasm, as part of the periplasmic protein MalE. When live bacteria expressing the foreign epitope at the cell surface were used for immunization of mice, they induced T cell-independent antibody responses characterized by a rapid induction of IgM and IgG antibodies. In contrast, when the same foreign epitope was inserted into the MalE protein, the antibody response was only detectable after 3 wk, belonged only to the IgG class and was strictly T cell dependent. This study has therefore identified two major pathways by which epitopes expressed by bacterial cells can stimulate specific antibody responses. The first pathway is mediated by direct activation of B cells by bacterial cell-surface Ag and does not require T cell help. The second pathway is T cell dependent and concerns Ag that can be released from the bacteria in a soluble form. We have also studied the effect of the exact position of the B cell antigenic determinant within the LamB protein and with respect to the outer membrane by comparing the immunogenicity of the PreS epitope inserted at three different permissive sites of LamB. The data indicated that to obtain an antibody response with intact bacteria, the epitope must be protruding sufficiently from the outside of the outer membrane. In contrast, when semipurified hybrid proteins were used as immunogen, the exact position of the B cell antigenic determinant within solubilized LamB protein does not influence its immunogenicity.  相似文献   

8.
Anti-I-A mAb were used as probes of functional epitopes for both the presentation of hen egg lysozyme (HEL) peptides to I-Ak-restricted T cell hybridomas and the direct binding of the HEL (46-61) peptide. When mAb directed to polymorphic regions of I-Ak were used as inhibitors of Ag presentation, several different patterns of inhibition were observed among T cells specific for the same HEL peptide as well as among T cells specific for different fragments of HEL. Although there appears to be a conserved usage of some TCR V beta gene segments among the T cell hybrids specific for the same HEL peptide, no correlation is evident between a single V gene usage and susceptibility to blocking of Ag presentation by a particular anti-I-Ak mAb. Several of the mAb demonstrated T cell "clonotypic blocking" of Ag presentation, whereas others blocked presentation to every T cell hybrid tested, regardless of the peptide specificity. When mAb directed to nonpolymorphic regions of the I-A molecule were tested for their ability to block Ag presentation, little or no inhibition was observed. In addition, Fab' fragments of inhibitory mAb functioned identically to their intact homologous counterparts in their ability to block Ag presentation indicating that "nonspecific" steric hindrance was not playing a major role in the inhibitions observed. When the polymorphic region-directed anti-I-A mAb were tested for their ability to block the direct binding of the lysozyme peptide HEL(46-61) to I-Ak, those mAb that block HEL presentation to all T cell hybrids were found to block the binding of this peptide. However, anti-I-A mAb that demonstrate selective inhibition of T cell hybrid stimulation during Ag presentation, i.e., those directed to polymorphic serologic specificities Ia.15 and Ia.19, do not block the binding of HEL(46-61) to I-Ak. These data indicate that functionally independent epitopes exist on the I-Ak molecule for the binding of antigenic peptides and for interaction with the TCR.  相似文献   

9.
T cell activation requires exposure to processed Ag and signaling by cytokines and costimulatory ligands. Adjuvants are thought to enhance immunity primarily through up-regulation of the latter signals. Here, we explore the effect of the bacterial adjuvant, endotoxin, on Ag presentation by B cells and dendritic cells (DC). Using an mAb (C4H3) specific for the hen egg lysozyme (HEL) 46-61 determinant bound to I-Ak, we analyze processed Ag expression and the tissue distribution of presenting cells following systemic administration of soluble HEL to mice. In both LPS-responsive and -hyporesponsive mice given endotoxin-containing HEL, B cells rapidly display surface 46-61/I-Ak complexes. In marked contrast, in LPS-hyporesponsive mice, splenic DC show little gain in C4H3 staining. In LPS-responsive animals, interdigitating DC in T cell areas show no staining above background at early times after HEL administration, but C4H3+ DC rapidly accumulate in the outer periarteriolar lymphoid sheaths (PALS) and in follicular areas. Within a few hours, C4H3+ DC appear in the T cell areas, concomitant with a decline in C4H3+ cells in the outer PALS, suggesting migration between these two sites. Endotoxin enhancement of C4H3 staining is seen for both CD8alpha- and CD8alpha+ DC subsets. These data suggest that a major effect of adjuvants is to promote mobilization of Ag-bearing DC to the T areas of lymphoid tissue, and possibly also to enhance Ag processing by these DC. Thus, microbial products promote T cell immunity not only through DC activation for cosignaling, but through improvement in signal 1 delivery.  相似文献   

10.
Ag processing and presentation via MHC class II is essential for activation of CD4(+) T lymphocytes. gamma-IFN-inducible lysosomal thiol reductase (GILT) is present in the MHC class II loading compartment and has been shown to facilitate class II Ag processing and recall responses to Ags containing disulfide bonds such as hen egg lysozyme (HEL). Reduction of proteins within the MHC class II loading compartment is hypothesized to expose residues for class II binding and protease trimming. In vitro analysis has shown that the active site of GILT involves Cys(46) and Cys(49), present in a CXXC motif that shares similarity with the thioredoxin family. To define the functional requirements for GILT in MHC class II Ag processing, a GILT-deficient murine B cell lymphoma line was generated and stably transduced with wild-type and cysteine mutants of GILT. Intracellular flow cytometric, immunoblotting, and immunofluorescence analyses demonstrated that wild-type and mutant GILT were expressed and maintained lysosomal localization. Transduction with wild-type GILT reconstituted MHC class II processing of a GILT-dependent HEL epitope. Mutation of either Cys(46) or Cys(49) abrogated MHC class II processing of a GILT-dependent HEL epitope. In addition, biochemical analysis of these mutants suggested that the active site facilitates processing of precursor GILT to the mature form. Precursor forms of GILT-bearing mutations in Cys(200) or Cys(211), previously found to display thiol reductase activity in vitro, could not mediate Ag processing. These studies demonstrate that the thiol reductase activity of GILT is its essential function in MHC class II-restricted Ag processing.  相似文献   

11.
Intracellular bacteria can reside in a vacuolar compartment, or they can escape the vacuole and become free living in the cytoplasm. The presentation of Ag by class I MHC molecules has been defined primarily for Ag present in the cytoplasm. It was therefore thought that Ags from bacteria that remain in a vacuole would not be presented by MHC class I molecules. Although some studies have provided data to support this idea, it is not necessarily true for all intracellular bacteria. For example, we have previously demonstrated that an epitope from the p60 protein secreted by LLO- Listeria monocytogenes, which does not reside in the cytoplasm, can be presented by MHC class I molecules to a T cell clone specific for the epitope, p60217-225. We have further examined the route by which Ag secreted by LLO- L. monocytogenes is presented by MHC class I molecules. Using pharmacological inhibitors, we demonstrate that MHC class I presentation of the p60 epitope derived from by LLO- L. monocytogenes requires phagolysosome fusion and processing by the proteasome. Lysosomal cathepsins, however, are not required for processing of the p60 epitope. Similarly, processing of the AttM epitope, secreted by LLO- L. monocytogenes and presented by H2-M3, also requires phagolysosome fusion and cleavage by the proteasome. Thus, p60 and AttM secreted by LLO- L. monocytogenes are processed via the classical class I pathway for presentation by MHC class I molecules.  相似文献   

12.
MHC class I molecules present peptides derived from the ectodomains of endogenous transmembrane proteins; however, the processing of these Ags is incompletely understood. As model transmembrane Ags we investigated the processing of MHC-I-derived fusion proteins containing the N-terminally extended K(b)-restricted OVA epitope SIINFEKL in the extracytoplasmic domain. In TAP-deficient, nonprofessional APCs, the epitope was cleaved out of various sequence contexts and presented to T cells. Ag presentation was inhibited by acidophilic amines and inhibitors of the vacuolar proton pump, indicating processing in endosomes. Endosomal aspartic-type cathepsins, and to some extent also the trans-Golgi network protease furin, were involved in processing. Clathrin-dependent and independent internalization from the cell surface targeted MHC-I fusion proteins to early and late endosomes, where SIINFEKL/K(b) complexes were detected by immunofluorescence microscopy. Targeting of MHC-I fusion proteins to processing compartments was independent of sequence motifs in the cytoplasmic tail. Not only TAP-deficient cells, but also TAP-competent APCs used the vacuolar pathway for processing of MHC-I fusion proteins. Thus, endosomal processing of internalized endogenous transmembrane proteins represents a novel alternate pathway for the generation of MHC-I-binding peptides.  相似文献   

13.
We have used the enhanced uptake by FcR-bearing cells observed when Ag is administered as an immune complex to investigate the possible impact of specific antibodies on processing and presentation of antigen by accessory cells. The Ag Escherichia coli beta-galactosidase alone or bound to different mAb was incubated with peritoneal macrophages. These were subsequently exposed to a battery of Ag-specific T hybridoma clones. The resulting production of IL-2 was taken as a measure of effective presentation. The results of 43 mAb-T clone combinations showed a potentiation of presentation of Ag at substimulatory concentration in the majority of the cases, indicating that each mAb is conducive to FcR-mediated uptake by macrophages, and that each T clone can be stimulated by properly presented Ag. In contrast, nine combinations yielded a lower response, two of them falling to baseline values. We attribute these results, which corroborate our previous evidence of directional help in the beta-galactosidase system, to a modulation in enzymatic processing of Ag and its subsequent presentation imposed by the paratope of the mAb binding to the relevant epitope.  相似文献   

14.
Class II MHC molecules on the surface of an APC present immunogenic peptides derived mainly from exogenous proteins to CD4+ T cells. During its transport to the cell surface, class II molecules intersect the endocytic pathway where they acquire peptides derived from endocytosed proteins. However, class II-restricted presentation of endogenously derived peptides can also occur. The current studies were undertaken to examine the ability of different types of APC to generate and present four different T cell determinants derived from an endogenous, nonsecreted, truncated form of hen-egg white lysozyme (HEL[1-80]-Kk). This was compared with the ability of these APC to generate the same determinants from exogenous HEL. All the peptides derived from endogenous HEL[1-80]-Kk tested, were presented by B cells to HEL-specific T cell hybridomas with an efficiency similar to presentation of the same determinants from exogenous HEL. In contrast, an I-Ak-bearing rat fibroblast was unable to generate the HEL peptide 25-43 from exogenous HEL, but could efficiently produce it from endogenous HEL[1-80]-Kk. The results indicate first, that peptides derived from an endogenous Ag can be presented by MHC class II molecules with an efficiency comparable to that of the presentation of the exogenous Ag. Second, that Ag-presenting B cells can generate the same repertoire of antigenic peptides from endogenous Ag as those generated from the exogenous protein. And third, that in contrast to B cells, certain "nonprofessional" APC can generate, from an endogenous protein, T cell determinants distinct from those generated after endocytosis of the exogenous protein. These results suggest that processing of exogenous and endogenous Ag by different APC take place in different intracellular compartments.  相似文献   

15.
We have evaluated the relative contributions of the extracellular and cytoplasmic domains of MHC class II molecules in determining the Ag-processing requirements for class II-restricted Ag presentation to T cells. Hybrid genes were constructed to encode a heterodimeric I-Ak molecule in which the extracellular portion of the molecule resembled wild type I-Ak but where the connecting stalk, transmembrane and cytoplasmic domains of both the alpha- and beta-chain were derived from the class I molecule H-2Dd. Mutant I-Ak molecules were expressed as heterodimeric membrane glycoproteins reactive with mAb specific for wild type I-Ak. Fibroblast and B lymphoma cells expressing either wild type or mutant I-Ak molecules were able to process and present hen egg lysozyme (HEL) and conalbumin to Ag-specific, I-Ak-restricted, T cell hybridomas or clones. The mutant-expressing cells presented native and peptide Ag less efficiently than the wild type-expressing cells, suggesting that the disparity in presentation efficiency was not due to a difference in Ag processing. CD4 interaction was intact on the mutant I-Ak molecules. Presentation of native Ag by mutant and wild type-I-Ak-expressing cells was abolished by preincubation with chloroquine, or after paraformaldehyde fixation. After transfection of a cDNA encoding the gene for HEL, neither mutant nor wild type-I-Ak-expressing cells presented endogenously synthesized HEL to a specific T hybrid. Newly synthesized mutant I-Ak molecules were associated with invariant chain. These data demonstrate the ability of hybrid class II molecules to associate intracellularly with invariant chain and degraded foreign Ag in a conventional class II-restricted processing pathway indicating that the extracellular domains of class II molecules play a dominant role in controlling these Ag-processing requirements.  相似文献   

16.
APCs process heat shock protein (HSP):peptide complexes to present HSP-chaperoned peptides on class I MHC molecules, but the ability of HSPs to contribute chaperoned peptides for class II MHC (MHC-II) Ag processing and presentation is unclear. Our studies revealed that exogenous bacterial HSPs (Escherichia coli DnaK and Mycobacterium tuberculosis HSP70) delivered an extended OVA peptide for processing and MHC-II presentation, as detected by T hybridoma cells. Bacterial HSPs enhanced MHC-II presentation only if peptide was complexed to the HSP, suggesting that the key HSP function was enhanced delivery or processing of chaperoned peptide Ag rather than generalized enhancement of APC function. HSP-enhanced processing was intact in MyD88 knockout cells, which lack most TLR signaling, further suggesting the effect was not due to TLR-induced induction of accessory molecules. Bacterial HSPs enhanced uptake of peptide, which may contribute to increased MHC-II presentation. In addition, HSPs enhanced binding of peptide to MHC-II molecules at pH 5.0 (the pH of vacuolar compartments), but not at pH 7.4, indicating another mechanism for enhancement of MHC-II Ag processing. Bacterial HSPs are a potential source of microbial peptide Ags during phagocytic processing of bacteria during infection and could potentially be incorporated in vaccines to enhance presentation of peptides to CD4+ T cells.  相似文献   

17.
Bispecific heteroconjugate antibodies can bind soluble protein Ag to APC and thereby enhance Ag presentation. We used such antibodies to bind hen egg lysozyme (HEL) to various structures on the surface of normal splenic B cells to determine which structures would provide the best targets for enhanced presentation. We found that HEL was presented efficiently to hybridoma T cells if bound to sIgD, sIgM, or class I or II MHC molecules, but not at all if bound to Fc gamma RII, or B220 molecules on B cells. The efficiency of presentation of HEL was measured as a function of the amount of 125I-HEL bound per cell. HEL was presented with 5 to 10 times greater efficiency when bound to sIg, than when bound to MHC molecules. When compared on the basis of the amount of HEL bound, sIgD and sIgM functioned equally as target structures, as did class I and class II MHC molecules. Large amounts of HEL bound to B220, but no presentation resulted, indicating that focusing HEL to the APC surface was not sufficient for presentation to occur. HEL was internalized rapidly and in large amounts when bound to sIgD or sIgM, but slowly and in small amounts, when bound to class I or class II MHC molecules. Thus, a rapid rate of internalization may in part explain the high efficiency of Ag presentation after binding to sIg. However, the small amount of HEL internalized via MHC molecules was utilized efficiently for presentation. These results indicate that sIgM and sIgD serve equally on normal B cells to focus and internalize Ag and enhance Ag presentation, but that class I or class II MHC molecules can also be used to internalize Ag and enhance Ag presentation, perhaps by a separate intracellular processing pathway.  相似文献   

18.
Immunization with the hen egg-white lysozyme (HEL) protein induces T cells to various of its peptide determinants. The distribution of such T cells, however, does not correlate with the peptide level of each epitope on class II molecules. For this reason, we sought information on the cells responsible for Ag presentation following immunization, hoping to understand the lack of immunodominance in this system. By tracking HEL, and the ensuing peptide/MHC complexes, we find the following: 1) that HEL in the draining lymph node gets concentrated in a limited number of APC, particularly in dendritic cells and macrophages, 2) that these APC are functionally capable of presenting both major and minor determinants of HEL over a 100-fold range of Ag dose, and 3) that B cells present Ag gained at early times after immunization, but only following higher dose immunization. These data indicate that the breadth of a response is maintained over a wide dosage range by concentration of Ag in a limited number of cells presenting high levels and a great diversity of epitopes.  相似文献   

19.
Following antigenic challenge, MHC-restricted T cell responses are directed against a few dominant antigenic epitopes. Here, evidence is provided demonstrating the importance of APC in modulating the hierarchy of MHC class II-restricted T cell responses. Biochemical analysis of class II:peptide complexes in B cells revealed the presentation of a hierarchy of peptides derived from the Ig self Ag. Functional studies of kappa peptide:class II complexes from these cells indicated that nearly 20-fold more of an immunodominant epitope derived from kappa L chains was bound to class II DR4 compared with a subdominant epitope from this same Ag. In vivo, T cell responses were preferentially directed against the dominant kappa epitope as shown using Ig-primed DR4 transgenic mice. The bias in kappa epitope presentation was not linked to differences in class II:kappa peptide-binding affinity or epitope editing by HLA-DM. Rather, changes in native Ag structure were found to disrupt presentation of the immunodominant but not the subdominant kappa epitope; Ag refolding restored kappa epitope presentation. Thus, Ag tertiary conformation along with processing reactions within APC contribute to the selective presentation of a hierarchy of epitopes by MHC class II molecules.  相似文献   

20.
Phagocytic processing of heat-killed Listeria monocytogenes by peritoneal macrophages resulted in degradation of these bacteria in phagolysosomal compartments and processing of bacterial antigens for presentation to T cells by class II MHC molecules. Within 20 min of uptake by macrophages, Listeria peptide antigens were expressed on surface class II MHC molecules, capable of stimulating Listeria-specific T cells. Within this period, degradation of labeled bacteria to acid-soluble low molecular weight catabolites also commenced. Immunoelectron microscopy was used to evaluate the compartments involved in this processing. Upon uptake of the bacteria, phagosomes containing Listeria fused rapidly with both lysosomes and endosomes. Class II MHC molecules were present in a tubulo-vesicular lysosome compartment, which appeared to fuse with phagosomes, as well as in the resulting phagolysosomes containing internalized Listeria; these compartments were all positive for Lamp 1 and cathepsin D and lacked 46-kD mannose-6-phosphate receptors. In addition, class II MHC and Lamp 1 were co-localized in vesicles of the trans Golgi reticulum, where they were segregated from 46-kD mannose-6-phosphate receptors. Vesicles containing both Listeria-derived components and class II MHC molecules were also observed; some of these may represent vesicles recycling from phagolysosomes, potentially bearing processed immunogenic peptides complexed with class II MHC. These results support a central role for lysosomes and phagolysosomes in the processing of bacterial antigens for presentation to T cells. Tubulo-vesicular lysosomes appear to represent an important convergence of endocytic, phagocytic and biosynthetic pathways, where antigens may be processed to allow binding to class II MHC molecules and recycling to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号