首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared the changes in nasal and pharyngeal resistance induced by modifications in the central respiratory drive in 8 patients with sleep apnea syndrome (SAS) with the results of 10 normal men. Upper airway pressures were measured with two low-bias flow catheters; one was placed at the tip of the epiglottis and the other above the uvula. Nasal and pharyngeal resistances were calculated at isoflow. During CO2 rebreathing and during the 2 min after maximal voluntary hyperventilation, we continuously recorded upper airway pressures, airflow, end-tidal CO2, and the mean inspiratory flow (VT/TI); inspiratory pressure generated at 0.1 s after the onset of inspiration (P0.1) was measured every 15-20 s. In both groups upper airway resistance decreased as P0.1 increased during CO2 rebreathing. When P0.1 increased by 500%, pharyngeal resistance decreased to 17.8 +/- 3.1% of base-line values in SAS patients and to 34.9 +/- 3.4% in normal subjects (mean +/- SE). During the posthyperventilation period the VT/TI fell below the base-line level in seven SAS patients and in seven normal subjects. The decrease in VT/TI was accompanied by an increase in upper airway resistance. When the VT/TI decreased by 30% of its base-line level, pharyngeal resistance increased to 319.1 +/- 50.9% in SAS and 138.5 +/- 4.7% in normal subjects (P less than 0.05). We conclude that 1) in SAS patients, as in normal subjects, the activation of upper airway dilators is reflected by indexes that quantify the central inspiratory drive and 2) the pharyngeal patency is more sensitive to the decrease of the central respiratory drive in SAS patients than in normal subjects.  相似文献   

2.
Influence of passive changes of lung volume on upper airways   总被引:5,自引:0,他引:5  
The total upper airway resistances are modified during active changes in lung volume. We studied nine normal subjects to assess the influence of passive thoracopulmonary inflation and deflation on nasal and pharyngeal resistances. With the subjects lying in an iron lung, lung volumes were changed by application of an extrathoracic pressure (Pet) from 0 to 20 (+Pet) or -20 cmH2O (-Pet) in 5-cmH2O steps. Upper airway pressures were measured with two low-bias flow catheters, one at the tip of the epiglottis and the other in the posterior nasopharynx. Breath-by-breath resistance measurements were made at an inspiratory flow rate of 300 ml/s at each Pet step. Total upper airway, nasal, and pharyngeal resistances increased with +Pet [i.e., nasal resistance = 139.6 +/- 14.4% (SE) of base-line and pharyngeal resistances = 189.7 +/- 21.1% at 10 cmH2O of +Pet]. During -Pet there were no significant changes in nasal resistance, whereas pharyngeal resistance decreased significantly (pharyngeal resistance = 73.4 +/- 7.4% at -10 cmH2O). We conclude that upper airway resistance, particularly the pharyngeal resistance, is influenced by passive changes in lung volumes, especially pulmonary deflation.  相似文献   

3.
Investigation into the etiology of obstructive sleep apnea is beginning to focus increasing attention on upper airway anatomy and physiology (patency and resistance). Before conclusions concerning upper airway resistance in these patients can be made, the normal range of supraglottic and, more specifically, pharyngeal resistance needs to be better defined. We measured supraglottic and pharyngeal resistances during nasal breathing in a normal population of 35 men and women. Our technique measured epiglottic pressure with a balloon-tipped catheter, choanal pressure using anterior rhinometry, and flow with a sealed face mask and pneumotachograph. Resistance was measured at a flow rate of 300 ml/s during inspiration. Men had a mean pharyngeal resistance (choanae to epiglottis) of 4.6 +/- 0.8 (SE) cmH2O X l-1 X s, whereas women demonstrated a significantly (P less than 0.01) lower value, 2.3 +/- 0.3 cmH2O X l-1 X s. Supraglottic resistance was also higher in men (P = 0.01). Age (r = 0.73, P less than 0.01) correlated closely with pharyngeal resistance in men, but no such correlations could be found in women. These results may have implications in the epidemiology of obstructive sleep apnea.  相似文献   

4.
Influence of respiratory drive on upper airway resistance in normal men   总被引:1,自引:0,他引:1  
The variations in nasal and pharyngeal resistance induced by changes in the central inspiratory drive were studied in 10 normal men. To calculate resistances we measured upper airway pressures with two low-bias flow catheters; one was placed at the tip of the epiglottis and the other in the posterior nasopharynx, and we measured flow with a Fleisch no. 3 pneumotachograph connected to a tightly fitting mask. Both resistances were obtained continuously during CO2 rebreathing (Read's method) and during the 2 min after a 1-min voluntary maximal hyperventilation. The inspiratory drive was estimated by measurements of inspiratory pressure generated at 0.1 s after the onset of inspiration (P0.1) and by the mean inspiratory flow (VT/TI). In each subject both resistances decreased during CO2 rebreathing; these decreases were correlated with the increase in P0.1. During the posthyperventilation period, ventilation fell below base line in seven subjects; this was accompanied by an increase in both nasal and pharyngeal resistances. These resistances increased exponentially as VT/TI decreased. Parallel changes in nasal and pharyngeal resistances were seen during CO2 stimulus and during the period after the hyperventilation. We conclude that 1) the indexes quantifying the inspiratory drive reflect the activation of nasopharyngeal dilator muscles (as assessed by the changes in upper airway resistance) and 2) both nasal and pharyngeal resistances are similarly influenced by changes in the respiratory drive.  相似文献   

5.
The effects of mild hypoxia on brain oxyhemoglobin, cytochrome a,a3 redox status, and cerebral blood volume were studied using near-infrared spectroscopy in eight healthy volunteers. Incremental hypoxia reaching 70% arterial O2 saturation was produced in normocapnia [end-tidal PCO2 (PETCO2) 36.9 +/- 2.6 to 34.9 +/- 3.4 Torr] or hypocapnia (PETCO2 32.8 +/- 0.6 to 23.7 +/- 0.6 Torr) by an 8-min rebreathing technique and regulation of inspired CO2. Normocapnic hypoxia was characterized by progressive reductions in arterial PO2 (PaO2, 89.1 +/- 3.5 to 34.1 +/- 0.1 Torr) with stable PETCO2, arterial PCO2 (PaCO2), and arterial pH and resulted in increases in heart rate (35%) systolic blood pressure (14%), and minute ventilation (5-fold). Hypocapnic hypoxia resulted in progressively decreasing PaO2 (100.2 +/- 3.6 to 28.9 +/- 0.1 Torr), with progressive reduction in PaCO2 (39.0 +/- 1.6 to 27.3 +/- 1.9 Torr), and an increase in arterial pH (7.41 +/- 0.02 to 7.53 +/- 0.03), heart rate (61%), and ventilation (3-fold). In the brain, hypoxia resulted in a steady decline of cerebral oxyhemoglobin content and a decrease in oxidized cytochrome a,a3. Significantly greater loss of oxidized cytochrome a,a3 occurred for a given decrease in oxyhemoglobin during hypocapnic hypoxia relative to normocapnic hypoxia. Total blood volume response during hypoxia also was significantly attenuated by hypocapnia, because the increase in volume was only half that of normocapnic subjects. We conclude that cytochrome a,a3 oxidation level in vivo decreases at mild levels of hypoxia. PaCO is an important determinant of brain oxygenation, because it modulates ventilatory, cardiovascular, and cerebral O2 delivery responses to hypoxia.  相似文献   

6.
Goats were prepared so that one carotid body (CB) could be perfused with blood in which the gas tensions could be controlled independently from the blood perfusing the systemic arterial system, including the brain. Since one CB is functionally adequate, the nonperfused CB was excised. To determine whether systemic arterial hypoxemia is necessary for ventilatory acclimatization to hypoxia (VAH), the CB was perfused with hypoxic normocapnic blood for 6 h [means +/- SE: partial pressure of carotid body O2 (PcbO2), 40.6 +/- 0.3 Torr; partial pressure of carotid body CO2 (PcbCO2), 38.8 +/- 0.2 Torr] while the awake goat breathed room air to maintain systemic arterial normoxia. In control periods before and after CB hypoxia the CB was perfused with hyperoxic normocapnic blood. Changes in arterial PCO2 (PaCO2) were used as an index of changes in ventilation. Acute hypoxia (0.5 h of hypoxic perfusion) resulted in hyperventilation sufficient to reduce average PaCO2 by 6.7 Torr from control (P less than 0.05). Over the subsequent 5.5 h of hypoxic perfusion, average PaCO2 decreased further, reaching 4.8 Torr below that observed acutely (P less than 0.05). Acute CB hyperoxic perfusion (20 min) following 6 h of hypoxia resulted in only partial restoration of PaCO2 toward control values; PaCO2 remained 7.9 Torr below control (P less than 0.05). The progressive hyperventilation that occurred during and after 6 h of CB hypoxia with concomitant systemic normoxia is similar to that occurring with total body hypoxia. We conclude that systemic (and probably brain) hypoxia is not a necessary requisite for VAH.  相似文献   

7.
To determine the influence of changes in nasal pressure (Pn) on airflow mechanics in the upper airway, we examined the effect of elevations in Pn on upper airway resistance and critical pressure (Pcrit) during stage I/II sleep in six patients with obstructive sleep apnea. When Pn was elevated above a Pcrit, periodic occlusions of the upper airway were eliminated and inspiratory airflow limitation was demonstrated by the finding that inspiratory airflow (VI) became maximal (VImax) and independent of fluctuations in hypopharyngeal pressure (Php) when Php fell below a specific Php (Php'). As Pn was elevated, VI vs. Php demonstrated 1) marked decreases in early and late inspiratory resistances from 75.9 +/- 34.7 and 54.6 +/- 19.0 to 8.0 +/- 1.7 and 7.6 +/- 1.6 cmH2O.l-1.s (P less than 0.05), respectively, and 2) increases in early and late inspiratory Php' to levels that exceeded Pcrit by 3.0 +/- 0.6 and 3.1 +/- 0.7 cmH2O, respectively, at the highest level of Pn applied (P less than 0.01). This latter finding suggests that elevations in Pn result in increases in Pcrit. We suggest that elevations in Pn produce distinct alterations in upper airway resistance and collapsibility, which may influence oppositely the level of airflow through the upper airway during sleep.  相似文献   

8.
To investigate the effect of alae nasi (AN) activation on nasal resistance, we monitored AN electromyographic (EMG) activity in 17 healthy subjects using surface electrodes placed on either side of the external nares and measured inspiratory nasal resistance utilizing the method of posterior rhinometry. With CO2 inhalation (6 subj), AN EMG activity increased as nasal resistance fell 23 +/- 5% (P less than 0.01). In the same subjects, voluntary flaring of the external nares also increased AN EMG and decreased nasal resistance by 29 +/- 5% (P less than 0.01). Nasal resistance was altered by nasal flaring and CO2 inhalation even after administration of a topical nasal vasoconstrictive spray (8 subj). In six subjects, voluntary nasal flaring or inhibition with the mouth closed produced a 21 +/- 12% change (P less than 0.01) in total airway resistance as measured by body plethysmography. We conclude that activation of the alae nasi will decrease nasal and total airway resistance during voluntary nasal flaring and during CO2 inhalation and thus should be considered in any studies of upper airway resistance.  相似文献   

9.
Effect of inspiratory nasal loading on pharyngeal resistance   总被引:1,自引:0,他引:1  
Nasal obstruction has been shown to increase the number of apneas during sleep in normal subjects and in some may actually cause the sleep apnea syndrome. We postulated that the pharynx may act as a Starling resistor, where increases in negative inspiratory pressure result in elevated resistance across a collapsible pharyngeal segment. To test this theory in normal subjects we studied 10 men and 10 women during wakefulness. Pharyngeal resistance (the resistance across the airway segment between the choanae and the epiglottis) was determined in the normal state and with three inspiratory loads added externally. Flow was measured using a pneumotachometer and a sealed face mask; epiglottic pressure by a latex balloon placed just above the epiglottis and choanal pressure by anterior rhinometry. Pharyngeal resistance (measured at 300 ml/s) could thus be determined. Base-line inspiratory pharnygeal resistance was 1.6 +/- 0.2 cmH2O . l-1 . s. This increased to 2.3 +/- 0.3, 2.8 +/- 0.4, and 2.9 +/- 0.4 cmH2O . l-1 . s, respectively, with the addition of 1.3, 2.7, and 6.7 cmH2O . l-1 . s inspiratory load. The resistance at each level of load was significantly different from the base-line resistance determination (P less than 0.05) but not different from each other. We conclude that added nasal resistive loads during inspiration cause an increase in pharyngeal resistance during wakefulness but that this resistance does not increase further with additional increments of load.  相似文献   

10.
The effects of hypercapnia produced by CO2 rebreathing on total pulmonary, supraglottic, and lower airway (larynx and lungs) resistance were determined in eight premature infants [gestational age at birth 32 +/- 3 (SE) wk, weight at study 1,950 +/- 150 g]. Nasal airflow was measured with a mask pneumotachograph, and pressures in the esophagus and oropharynx were measured with a fluid-filled or 5-Fr Millar pressure catheter. Trials of hyperoxic (40% inspired O2 fraction) CO2 rebreathing were performed during quiet sleep. Total pulmonary resistance decreased progressively as end-tidal PCO2 (PETCO2) increased from 63 +/- 23 to 23 +/- 15 cmH2O.l-1.s in inspiration and from 115 +/- 82 to 42 +/- 27 cmH2O.l-1.s in expiration between room air (PETCO2 37 Torr) and PETCO2 of 55 Torr (P less than 0.05). Lower airway resistance (larynx and lungs) also decreased from 52 +/- 22 to 18 +/- 14 cmH2O.l-1.s in inspiration and from 88 +/- 45 to 30 +/- 22 cmH2O.l-1.s in expiration between PETCO2 of 37 and 55 Torr, respectively (P less than 0.05). Resistance of the supraglottic airway also decreased during inspiration from 7.2 +/- 2.5 to 3.6 +/- 2.5 cmH2O.l-1.s and in expiration from 7.6 +/- 3.3 to 5.3 +/- 4.7 cmH2O.l-1.s at PETCO2 of 37 and 55 Torr (P less than 0.05). The decrease in resistance that occurs within the airway in response to inhaled CO2 may permit greater airflow at any level of respiratory drive, thereby improving the infant's response to CO2.  相似文献   

11.
The influence of pulmonary inflation and positive airway pressure on nasal and pharyngeal resistance were studied in 10 normal subjects lying in an iron lung. Upper airway pressures were measured with two low-bias flow catheters while the subjects breathed by the nose through a Fleish no. 3 pneumotachograph into a spirometer. Resistances were calculated at isoflow rates in four different conditions: exclusive pulmonary inflation, achieved by applying a negative extra-thoracic pressure (NEP); expiratory positive airway pressure (EPAP), which was created by immersion of the expiratory line; continuous positive airway pressure (CPAP), realized by loading the bell of the spirometer; and CPAP without pulmonary inflation by simultaneously applying the same positive extrathoracic pressure (CPAP + PEP). Resistance measurements were obtained at 5- and 10-cmH2O pressure levels. Pharyngeal resistance (Rph) significantly decreased during each measurement; the decreases in nasal resistance were only significant with CPAP and CPAP + PEP; the deepest fall in Rph occurred with CPAP. It reached 70.8 +/- 5.5 and 54.8 +/- 6.5% (SE) of base-line values at 5 and 10 cmH2O, respectively. The changes in lung volume recorded with CPAP + PEP ranged from -180 to 120 ml at 5 cmH2O and from -240 to 120 ml at 10 cmH2O. Resistances tended to increase with CPAP + PEP compared with CPAP values, but these changes were not significant (Rph = 75.9 +/- 6.1 and 59.9 +/- 6.6% at 5 and 10 cmH2O of CPAP + PEP). We conclude that 1) the upper airway patency increases during pulmonary inflation, 2) the main effect of CPAP is related to pneumatic splinting, and 3) pulmonary inflation contributes little to the decrease in upper airways resistance observed with CPAP.  相似文献   

12.
Electrical phrenic nerve stimulation (EPNS) applied at end expiration during exclusive nasal breathing can be used to characterize upper airway (UA) dynamics during wakefulness by dissociating phasic activation of UA and respiratory muscles. The UA level responsible for the EPNS-induced increase in UA resistance is unknown. The influence of the twitch expiratory timing (200 ms and 2 s) on UA resistance was studied in nine normal awake subjects by looking at instantaneous flow, esophageal and pharyngeal pressures, and genioglossal electromyogram (EMG) activity during EPNS at baseline and at -10 cmH(2)O. The majority of twitches had a flow-limited pattern. Twitches realized at 200 ms and 2 s did not differ in their maximum inspiratory flows, but esophageal pressure measured at maximum inspiratory flow was significantly less negative with late twitches (-6.6 +/- 2.7 and -5.0 +/- 3.0 cmH(2)O respectively, P = 0.04). Pharyngeal resistance was higher when twitches were realized at 2 s than at 200 ms (6.4 +/- 2.4 and 2.7 +/- 1.1 cmH(2)O x l(-1). s, respectively). EMG activity significant rose at peak esophageal pressure with a greater increase for late twitches. We conclude that twitch-induced UA collapse predominantly occurs at the pharyngeal level and that UA stability assessed by EPNS depends on the expiratory time at which twitches are performed.  相似文献   

13.
Although pharyngeal muscles respond robustly to increasing PCO(2) during wakefulness, the effect of hypercapnia on upper airway muscle activation during sleep has not been carefully assessed. This may be important, because it has been hypothesized that CO(2)-driven muscle activation may importantly stabilize the upper airway during stages 3 and 4 sleep. To test this hypothesis, we measured ventilation, airway resistance, genioglossus (GG) and tensor palatini (TP) electromyogram (EMG), plus end-tidal PCO(2) (PET(CO(2))) in 18 subjects during wakefulness, stage 2, and slow-wave sleep (SWS). Responses of ventilation and muscle EMG to administered CO(2) (PET(CO(2)) = 6 Torr above the eupneic level) were also assessed during SWS (n = 9) or stage 2 sleep (n = 7). PET(CO(2)) increased spontaneously by 0.8 +/- 0.1 Torr from stage 2 to SWS (from 43.3 +/- 0.6 to 44.1 +/- 0.5 Torr, P < 0.05), with no significant change in GG or TP EMG. Despite a significant increase in minute ventilation with induced hypercapnia (from 8.3 +/- 0.1 to 11.9 +/- 0.3 l/min in stage 2 and 8.6 +/- 0.4 to 12.7 +/- 0.4 l/min in SWS, P < 0.05 for both), there was no significant change in the GG or TP EMG. These data indicate that supraphysiological levels of PET(CO(2)) (50.4 +/- 1.6 Torr in stage 2, and 50.4 +/- 0.9 Torr in SWS) are not a major independent stimulus to pharyngeal dilator muscle activation during either SWS or stage 2 sleep. Thus hypercapnia-induced pharyngeal dilator muscle activation alone is unlikely to explain the paucity of sleep-disordered breathing events during SWS.  相似文献   

14.
Possible mechanisms of periodic breathing during sleep   总被引:3,自引:0,他引:3  
To determine the effect of respiratory control system loop gain on periodic breathing during sleep, 10 volunteers were studied during stage 1-2 non-rapid-eye-movement (NREM) sleep while breathing room air (room air control), while hypoxic (hypoxia control), and while wearing a tight-fitting mask that augmented control system gain by mechanically increasing the effect of ventilation on arterial O2 saturation (SaO2) (hypoxia increased gain). Ventilatory responses to progressive hypoxia at two steady-state end-tidal PCO2 levels and to progressive hypercapnia at two levels of oxygenation were measured during wakefulness as indexes of controller gain. Under increased gain conditions, five male subjects developed periodic breathing with recurrent cycles of hyperventilation and apnea; the remaining subjects had nonperiodic patterns of hyperventilation. Periodic breathers had greater ventilatory response slopes to hypercapnia under either hyperoxic or hypoxic conditions than nonperiodic breathers (2.98 +/- 0.72 vs. 1.50 +/- 0.39 l.min-1.Torr-1; 4.39 +/- 2.05 vs. 1.72 +/- 0.86 l.min-1.Torr-1; for both, P less than 0.04) and greater ventilatory responsiveness to hypoxia at a PCO2 of 46.5 Torr (2.07 +/- 0.91 vs. 0.87 +/- 0.38 l.min-1.% fall in SaO2(-1); P less than 0.04). To assess whether spontaneous oscillations in ventilation contributed to periodic breathing, power spectrum analysis was used to detect significant cyclic patterns in ventilation during NREM sleep. Oscillations occurred more frequently in periodic breathers, and hypercapnic responses were higher in subjects with oscillations than those without. The results suggest that spontaneous oscillations in ventilation are common during sleep and can be converted to periodic breathing with apnea when loop gain is increased.  相似文献   

15.
Systemic hemodynamics, including forearm blood flow and ventilatory parameters, were evaluated in 21 subjects before and after exposure to 8 h of poikilocapnic hypoxia. To evaluate the role of sympathetic nervous system activation in the changes, in 10 of these subjects, we measured muscle sympathetic nerve activity (MSNA) before and after exposure, and the remaining 11 subjects received intra-arterial phentolamine infusion in the brachial artery to define vascular tone in the absence of sympathetically mediated vasoconstriction. Short-term ventilatory acclimatization occurred as evidenced by a decrease in resting Pco(2) (from 42 +/- 1.4 to 37 +/- 0.96 mmHg) and by an increase in the slope of the ventilatory response to acute hypoxia [from 0.7 +/- 0.1 to 1.2 +/- 0.2 l.min(-1).%Sp(O(2)) (blood O(2) saturation from pulse oximetry)] after exposure. Subjects demonstrated a significant increase in resting heart rate (from 61 +/- 2 to 65 +/- 2 beats/min) and diastolic blood pressure (from 64.8 +/- 2.7 to 70.4 +/- 2.0 mmHg). MSNA did not change significantly after exposure, although there was a trend toward a decrease in burst frequency (from 19.8 +/- 4.1 to 14.3 +/- 1.2 bursts/min). Forearm vascular resistance showed a significant decrease after termination of exposure (from 37.7 +/- 3.6 to 27.6 +/- 2.7 mmHg.ml(-1).min.100 g tissue, P < 0.05). Initially, progressive isocapnic hypoxia elicited significant vasodilation, but after 8 h of poikilocapnic hypoxic exposure, the acute challenge failed to change forearm vascular resistance. Local alpha-blockade with phentolamine restored the vasodilatory response to acute hypoxia in the postexposure setting.  相似文献   

16.
There is evidence that narrowing or collapse of the pharynx can contribute to obstructive sleep-disordered breathing (SDB) in adults and children. However, studies in children have focused on those with relatively severe SDB who generally were recruited from sleep clinics. It is unclear whether children with mild SDB who primarily have hypopneas, and not frank apnea, also have more collapsible airways. We estimated airway collapsibility in 10 control subjects (9.4 +/- 0.5 yr old; 1.9 +/- 0.2 hypopneas/h) and 7 children with mild SDB (10.6 +/- 0.5 yr old; 11.5 +/- 0.1 hypopneas/h) during stable, non-rapid eye movement sleep. None of the subjects had clinically significant enlargement of the tonsils or adenoids, nor had any undergone previous tonsillectomy or adenoidectomy. Airway collapsibility was measured by brief (2-breath duration) and sudden reductions in pharyngeal pressure by connecting the breathing mask to a negative pressure source. Negative pressure applications ranging from -1 to -20 cmH(2)O were randomly applied in each subject while respiratory airflow and mask pressure were measured. Flow-pressure curves were constructed for each subject, and the x-intercept gave the pressure at zero flow, the so-called critical pressure of the upper airway (Pcrit). Pcrit was significantly higher in children with SDB than in controls (-10.8 +/- 2.8 vs. -15.7 +/- 1.2 cmH(2)O; P < 0.05). There were no significant differences in the slopes of the pressure-flow relations or in baseline airflow resistance. These data support the concept that intrinsic pharyngeal collapsibility contributes to mild SDB in children.  相似文献   

17.
A current hypothesis for obstructive sleep apnea states that 1) negative airway pressure during inspiration can collapse the pharyngeal airway, and 2) neural control of pharyngeal airway-dilating muscles is important in preventing this collapse. To test this hypothesis we performed nasal mask occlusions to increase negative pharyngeal airway pressures during inspiration in eight normal and five micrognathic infants. Both groups developed midinspiratory pharyngeal obstruction, but obstruction was more frequent in micrognathic infants and varied in some infants with sleep state. The airway usually reopened with the subsequent expiration. The occasional failure to reopen was presumably due to pharyngeal wall adhesion. If airway obstruction occurred in sequential breaths during multiple-breath nasal mask occlusions in normal infants, there was a breath-by-breath change in the airway pressure associated with airway closure (airway closing pressure); the airway closing pressure became progressively more negative. Micrognathic infants showed less ability to improve the airway closing pressure, but this ability increased with age. These findings suggest that nasal mask occlusion can test the competence of the neuromuscular mechanisms that maintain pharyngeal airway patency in infants. Micrognathic infants had spontaneous midinspiratory pharyngeal airway obstructions during snoring. Their episodes of obstructive apnea began with midinspiratory pharyngeal obstruction similar to that seen during snoring and nasal mask occlusions. These findings imply a similar pathophysiology for snoring, spontaneous airway obstruction, and obstruction during snoring.  相似文献   

18.
Sleep-related reduction in geniohyoid muscular support may lead to increased airway resistance in normal subjects. To test this hypothesis, we studied seven normal men throughout a single night of sleep. We recorded inspiratory supraglottic airway resistance, geniohyoid muscle electromyographic (EMGgh) activity, sleep staging, and ventilatory parameters in these subjects during supine nasal breathing. Mean inspiratory upper airway resistance was significantly (P less than 0.01) increased in these subjects during all stages of sleep compared with wakefulness, reaching highest levels during non-rapid-eye-movement (NREM) sleep [awake 2.5 +/- 0.6 (SE) cmH2O.l-1.s, stage 2 NREM sleep 24.1 +/- 11.1, stage 3/4 NREM sleep 30.2 +/- 12.3, rapid-eye-movement (REM) sleep 13.0 +/- 6.7]. Breath-by-breath linear correlation analyses of upper airway resistance and time-averaged EMGgh amplitude demonstrated a significant (P less than 0.05) negative correlation (r = -0.44 to -0.55) between these parameters in five of seven subjects when data from all states (wakefulness and sleep) were combined. However, we found no clear relationship between normalized upper airway resistance and EMGgh activity during individual states (wakefulness, stage 2 NREM sleep, stage 3/4 NREM sleep, and REM sleep) when data from all subjects were combined. The timing of EMGgh onset relative to the onset of inspiratory airflow did not change significantly during wakefulness, NREM sleep, and REM sleep. Inspiratory augmentation of geniohyoid activity generally preceded the start of inspiratory airflow. The time from onset of inspiratory airflow to peak inspiratory EMGgh activity was significantly increased during sleep compared with wakefulness (awake 0.81 +/- 0.04 s, NREM sleep 1.01 +/- 0.04, REM sleep 1.04 +/- 0.05; P less than 0.05). These data indicate that sleep-related changes in geniohyoid muscle activity may influence upper airway resistance in some subjects. However, the relationship between geniohyoid muscle activity and upper airway resistance was complex and varied among subjects, suggesting that other factors must also be considered to explain sleep influences on upper airway patency.  相似文献   

19.
We hypothesized that long-term facilitation (LTF) is due to decreased upper airway resistance (Rua). We studied 11 normal subjects during stable non-rapid eye movement sleep. We induced brief isocapnic hypoxia (inspired O(2) fraction = 8%) (3 min) followed by 5 min of room air. This sequence was repeated 10 times. Measurements were obtained during control, hypoxia, and at 20 min of recovery (R(20)) for ventilation, timing, and Rua. In addition, nine subjects were studied in a sham study with no hypoxic exposure. During the episodic hypoxia study, inspiratory minute ventilation (VI) increased from 7.1 +/- 1.8 l/min during the control period to 8.3 +/- 1.8 l/min at R(20) (117% of control; P < 0.05). Conversely, there was no change in diaphragmatic electromyogram (EMG(dia)) between control (16.1 +/- 6.9 arbitrary units) and R(20) (15.3 +/- 4.9 arbitrary units) (95% of control; P > 0.05). In contrast, increased VI was associated with decreased Rua from 10.7 +/- 7.5 cmH(2)O. l(-1). s during control to 8.2 +/- 4.4 cmH(2)O. l(-1). s at R(20) (77% of control; P < 0.05). No change was noted in VI, Rua, or EMG(dia) during the recovery period relative to control during the sham study. We conclude the following: 1) increased VI in the recovery period is indicative of LTF, 2) the lack of increased EMG(dia) suggests lack of LTF to the diaphragm, 3) reduced Rua suggests LTF of upper airway dilators, and 4) increased VI in the recovery period is due to "unloading" of the upper airway by LTF of upper airway dilators.  相似文献   

20.
Repetitive hypoxia followed by persistently increased ventilatory motor output is referred to as long-term facilitation (LTF). LTF is activated during sleep after repetitive hypoxia in snorers. We hypothesized that LTF is activated in obstructive sleep apnea (OSA) patients. Eleven subjects with OSA (apnea/hypopnea index = 43.6 +/- 18.7/h) were included. Every subject had a baseline polysomnographic study on the appropriate continuous positive airway pressure (CPAP). CPAP was retitrated to eliminate apnea/hypopnea but to maintain inspiratory flow limitation (sham night). Each subject was studied on 2 separate nights. These two studies are separated by 1 mo of optimal nasal CPAP treatment for a minimum of 4-6 h/night. The device was capable of covert pressure monitoring. During night 1 (N1), study subjects used nasal CPAP at suboptimal pressure to have significant air flow limitation (>60% breaths) without apneas/hypopneas. After stable sleep was reached, we induced brief isocapnic hypoxia [inspired O(2) fraction (FI(O(2))) = 8%] (3 min) followed by 5 min of room air. This sequence was repeated 10 times. Measurements were obtained during control, hypoxia, and at 5, 20, and 40 min of recovery for ventilation, timing (n = 11), and supraglottic pressure (n = 6). Upper airway resistance (Rua) was calculated at peak inspiratory flow. During the recovery period, there was no change in minute ventilation (99 +/- 8% of control), despite decreased Rua to 58 +/- 24% of control (P < 0.05). There was a reduction in the ratio of inspiratory time to total time for a breath (duty cycle) (0.5 to 0.45, P < 0.05) but no effect on inspiratory time. During night 2 (N2), the protocol of N1 was repeated. N2 revealed no changes compared with N1 during the recovery period. In conclusion, 1) reduced Rua in the recovery period indicates LTF of upper airway dilators; 2) lack of hyperpnea in the recovery period suggests that thoracic pump muscles do not demonstrate LTF; 3) we speculate that LTF may temporarily stabilize respiration in OSA patients after repeated apneas/hypopneas; and 4) nasal CPAP did not alter the ability of OSA patients to elicit LTF at the thoracic pump muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号