首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
正Traumatic spinal cord injury (SCI) usually results in devastating neurologic deficits and disability. In the United States,approximately 12,500 new cases are reported each year, while an estimated 100,000–140,000 new cases occur every year in China (National Spinal Cord Injury Statistical Center, 2016).Spinal cord injuries are highly disabling and primarily affect young adults, and therefore create great psychological and financial burden on the affected individuals and their families.  相似文献   

2.
Glial fibrillary acidic protein in regenerating teleost spinal cord   总被引:1,自引:0,他引:1  
Immunohistological and ultrastructural studies were carried out on normal and regenerating spinal cord of the gymnotid Sternarchus albifrons, and in the brain and spinal cord of the goldfish Carassius auratus, to examine the distribution of glial fibrillary acidic protein (GFAP) in these tissues. Sections of normal goldfish brain and spinal cord exhibited positive staining for GFAP. In normal Sternarchus spinal cord, electron microscopy has revealed filament-filled astrocytic processes; however, such astrocytic profiles were more numerous in regenerated cord. Likewise, while normal Sternarchus spinal cord showed only a small amount of GFAP staining, regenerated cords were strongly positive for GFAP. Positive staining with anti-GFAP was observed along the entire length of the regenerated cord in Sternarchus, and was especially strong in the transition zone between regenerated and unregenerated cord. Both regeneration of neurites and production of new neuronal cell bodies occur readily in such regenerating Sternarchus spinal cords (Anderson MJ, Waxman SG: J Hirnforsch 24: 371, 1983). These results demonstrate that the presence of GFAP and reactive astrocytes in Sternarchus spinal cord does not prevent neuronal regeneration in this species.  相似文献   

3.
Traditional neuromorphological and NADPH-diaphorase methods were used to study the topography, morphology and neurochemical organization properties of spinal cord in teleosts fishes. The heterogeneous population of NO-producing motoneurons was revealed in the motor column of spinal cords from studied species. Dendrites of primary motoneurons formed rich plexus at the spinal segment periphery. This morphological pattern is determined by translational motion of the fishes in the water (trunk-tail movement), and has no connection with the origin of upper and lower extremities. The NO-producing capacity of spinal motoneurons shows their connection with premotor NO-ergic brain system, including over situated motor centers of reticular formation and descending projections of giant steam neurons (Mauthner and Muller cells). The NO-producing Rohon-Berd neurons were found in the dorso-medial part of spinal cord from studied fishes. These cells with the ascending propriospinal targets form spinal nociceptive system. Thus, the sense Rohon-Berd cells and most motor neurons of studied bony fishes are nitric oxide synthesizing ones. Spinal cord NO-synthesizing territories are situated in concordance with dorso-ventral histochemical gradient. Spinal cord interneurons of these fishes produce nitric oxide selectively. The quantity of NO-synthesizing reticular cells is determined by two main factors: the connection with the specialized neurochemical complexes, where NO is a specific neuromodulator, and individual properties of spinal cord structure directed by conditions of morphoadaptation.  相似文献   

4.
5.
Stimulating regeneration in the damaged spinal cord.   总被引:6,自引:0,他引:6  
Great progress has been made in recent years in experimental strategies for spinal cord repair. In this review we describe two of these strategies, namely the use of neurotrophic factors to promote functional regeneration across the dorsal root entry zone (DREZ), and the use of synthetic fibronectin conduits to support directed axonal growth. The junction between the peripheral nervous system (PNS) and central nervous system (CNS) is marked by a specialized region, the DREZ, where sensory axons enter the spinal cord from the dorsal roots. After injury to dorsal roots, axons will regenerate as far as the DREZ but no further. However, recent studies have shown that this barrier can be overcome and function restored. In animals treated with neurotrophic factors, regenerating axons cross the DREZ and establish functional connections with dorsal horn cells. For example, intrathecal delivery of neurotrophin 3 (NT3) supports ingrowth of A fibres into the dorsal horn. This ingrowth is revealed using a transganglionic anatomical tracer (cholera toxin subunit B) and analysis at light and electron microscopic level. In addition to promoting axonal growth, spinal cord repair is likely to require strategies for supporting long-distance regeneration. Synthetic fibronectin conduits may be useful for this purpose. Experimental studies indicate that fibronectin mats implanted into the spinal cord will integrate with the host tissue and support extensive and directional axonal growth. Growth of both PNS and CNS axons is supported by the fibronectin, and axons become myelinated by Schwann cells. Ongoing studies are aimed at developing composite conduits and promoting axonal growth from the fibronectin back into the spinal cord.  相似文献   

6.
The source of neurite outgrowth in explant cultures of normal adult Apteronotus spinal cord was examined. Explants which contained the central region of spinal cord, including ependyma, showed neurite outgrowth in culture. Explants which did not contain ependyma showed no neurite outgrowth. It is concluded that the ependymal region is necessary for neurite outgrowth in these cultures of adult teleost spinal cord. In addition, our failure to observe axon outgrowth clearly attributable to fluorescently back-labeled electromotor neurons in these cultures suggests that the exuberant neurite outgrowth in vitro is most probably due to cells other than the electromotor neurons. This explant culture system provides a unique opportunity to study neuronal differentiation, regeneration, and neurogenesis in vitro.  相似文献   

7.
Developmental aspects of spinal cord and limb regeneration   总被引:1,自引:1,他引:0  
The ability of birds and mammals to regenerate tissues is limited. By contrast, urodele amphibians can regenerate a variety of injured tissues such as intestine, cardiac muscle, lens and neural retina, as well as entire structures such as limbs, tail and lower jaw. This regenerative capacity is associated with the ability to form masses of mesenchyme cells (blastemas) that differentiate into the missing tissues or parts. Understanding the mechanisms that underlie blastema formation in urodeles will provide valuable tools with which to achieve the goal of stimulating regeneration in mammalian tissues that do not naturally regenerate. Here we discuss an example of tissue regeneration (spinal cord) and an example of epimorphic appendage regeneration (limb) in the axolotl Ambystoma mexicanum , emphasizing analysis of the processes that produce the regeneration blastema and of the tissue interactions and blastemal products that contribute to the regeneration-promoting environment.  相似文献   

8.
 After tail amputation in urodele amphibians, dramatic changes appear in the spinal cord rostral to the amputation level. Transection induces a proliferation response in cells lining the ependymal canal, giving rise to an ependymal tube in which neurogenesis occurs. Using the thymidine analog bromodeoxyuridine (BrdU) in short- and long-term labeling of cells undergoing DNA synthesis (S phase of the cell cycle), specific cell markers, and cell cultures, we show that neurons derive from the proliferative ependymal layer of the ependymal tube. Received: 30 November 1998 / Accepted: 22 December 1998  相似文献   

9.
Axonal regeneration is inhibited by a plethora of different mechanisms in the adult central nervous system (CNS). While neurotrophic factors have been shown to stimulate axonal growth in numerous animal models of nervous system injury, a lack of suitable growth substrates, an insufficient activation of neuron-intrinsic regenerative programs, and extracellular inhibitors of regeneration limit the efficacy of neurotrophic factor delivery for anatomical and functional recovery after spinal cord injury. Thus, growth-stimulating factors will likely have to be combined with other treatment approaches to tap into the full potential of growth factor therapy for axonal regeneration. In addition, the temporal and spatial distribution of growth factors have to be tightly controlled to achieve biologically active concentrations, to allow for the chemotropic guidance of axons, and to prevent adverse effects related to the widespread distribution of neurotrophic factors. Here, we will review the rationale for combinatorial treatments in axonal regeneration and summarize some recent progress in promoting axonal regeneration in the injured CNS using such approaches.  相似文献   

10.
Small glutamine-rich tetratricopeptide repeat (TPR)-containing protein alpha (SGTA) is a novel TPR-containing protein involved in various biological processes. However, the expression and roles of SGTA in the central nervous system remain unknown. We have produced an acute spinal cord injury (SCI) model in adult rats and found that SGTA protein levels first significantly increase, reach a peak at day 3 and then gradually return to normal level at day 14 after SCI. These changes are striking in neurons, astrocytes and microglia. Additionally, colocalization of SGTA/active caspase-3 has been detected in neurons and colocalization of SGTA/proliferating cell nuclear antigen has been detected in astrocytes and microglial. In vitro, SGTA depletion by short interfering RNA inhibits astrocyte proliferation and decreases cyclinA and cyclinD1 protein levels. SGTA knockdown also reduces neuronal apoptosis. We speculate that SGTA is involved in biochemical and physiological responses after SCI.  相似文献   

11.
Nerve conduit is one of strategies for spine cord injury(SCI)treatment.Recently,studies showed that biomaterials could guide the neurite growth and promote axon regeneration at the injury site.However,the scaffold by itself was difficult to meet the need of SCI functional recovery.The basic fibroblast growth factor(bFGF)administration significantly promotes functional recovery after organ injuries.Here,using a rat model of T9 hemisected SCI,we aimed at assessing the repair capacity of implantation of collagen scaffold(CS)modified by collagen binding bFGF(CBD-bFGF).The results showed that CS combined with CBD-bFGF treatment improved survival rates after the lateral hemisection SCI.The CS/CBD-bFGF group showed more significant improvements in motor than the simply CS-implanted and untreated control group,when evaluated by the 21-point Basso-Beattie-Bresnahan(BBB)score and footprint analysis.Both hematoxylin and eosin(H&E)and immunohistochemical staining of neurofilament(NF)and glial fibrillary acidic protein(GFAP)demonstrated that fibers were guided to grow through the implants.These findings indicated that administration of CS modified with CBD-bFGF could promote spinal cord regeneration and functional recovery.  相似文献   

12.
Spinal cord injury (SCI) has been regarded clinically as an irreversible damage caused by tissue contusion due to a blunt external force. Past research had focused on the analysis of the pathogenesis of secondary injury that extends from the injury epicenter to the periphery, as well as tissue damage and neural cell death associated with secondary injury. Recent studies, however, have proven that neural stem (progenitor) cells are also present in the brain and spinal cord of adult mammals including humans. Analyses using spinal cord injury models have also demonstrated active dynamics of cells expressing several stem cell markers, and methods aiming at functional reconstruction by promoting the potential self-regeneration capacity of the spinal cord are being explored. Furthermore, reconstruction of the neural circuit requires not only replenishment or regeneration of neural cells but also regeneration of axons. Analysis of the tissue microenvironment after spinal cord injury and research aiming to remove axonal regeneration inhibitors have also made progress. SCI is one of the simplest central nervous injuries, but its pathogenesis is associated with diverse factors, and further studies are required to elucidate these complex interactions in order to achieve spinal cord regeneration and functional reconstruction.Key words: glia, regeneration, spinal cord, injury, axon  相似文献   

13.
Axon regeneration: Vaccinating against spinal cord injury   总被引:3,自引:0,他引:3  
Myelin is a potent inhibitor of axon regeneration, but has been viewed as just one of many factors that prevent regeneration after injury. So it comes as a surprise that immunization against myelin has been found to allow extensive axon regeneration after injury, without apparent autoimmune-induced demyelination.  相似文献   

14.
Spinal cord injury (SCI) has been regarded clinically as an irreversible damage caused by tissue contusion due to a blunt external force. Past research had focused on the analysis of the pathogenesis of secondary injury that extends from the injury epicenter to the periphery, as well as tissue damage and neural cell death associated with secondary injury. Recent studies, however, have proven that neural stem (progenitor) cells are also present in the brain and spinal cord of adult mammals including humans. Analyses using spinal cord injury models have also demonstrated active dynamics of cells expressing several stem cell markers, and methods aiming at functional reconstruction by promoting the potential self-regeneration capacity of the spinal cord are being explored. Furthermore, reconstruction of the neural circuit requires not only replenishment or regeneration of neural cells but also regeneration of axons. Analysis of the tissue microenvironment after spinal cord injury and research aiming to remove axonal regeneration inhibitors have also made progress. SCI is one of the simplest central nervous injuries, but its pathogenesis is associated with diverse factors, and further studies are required to elucidate these complex interactions in order to achieve spinal cord regeneration and functional reconstruction.  相似文献   

15.
The tail of the frog tadpole, comprising spinal cord, muscle, and notochord, regenerates following partial amputation. We show that, in Xenopus, this occurs throughout development, except for a "refractory period" between stages 45 and 47, when tails heal over without regeneration. Regeneration can be enabled during this refractory period by activation of either the BMP or Notch signaling pathways. Conversely, regeneration can be prevented during the later, regenerative, stages by inhibition of either pathway. BMP signaling will cause regeneration of all tissues, whereas Notch signaling activates regeneration of spinal cord and notochord, but not muscle. An activated form of Msx1 can promote regeneration in the same way as BMP signaling. Epistasis experiments suggest that BMP signaling is upstream of Notch signaling but exerts an independent effect on muscle regeneration. The results demonstrate that regenerative capability can be enabled by genetic modifications that reactivate specific components of the developmental program.  相似文献   

16.
Summary 1. The developing spinal cords of bullfrogs and transected cords of stage IV tadpoles were subjected to two-dimensional gel electrophoresis and histological analysis. During development, the level of actin,-tubulin or-tubulin in the 7–10th spinal segments increased with time and reached a maximum around stage XIII followed by a decrease, as shown from quantitative assay on protein spots of 2-dimensional gels of cord homogenates. In contrast, the level of 68 kD neurofilament subunit (NF68) was low in tadpoles but high in frog.2. Following a complete transection made at the level of the 8th spinal segment, the cord tissue of the lesion zone degenerated; regeneration from each cut end then occurred, which lengthened for approximate 0.35 mm by 28 days after transection. The content of actin,-tubulin and-tubulin in the cord within 1–2 mm of the transection site was elevated to 124–192% of control values 7–28 days post-transection, whereas NF68 declined to near non-detectable extent.3. The regeneration of each cord stump included outgrowth of neuroepithelial cells and nerve fibers, reconstituting a newly regenerated cord segment. Ultrastructural examination revealed that features of the regrowth of fibers and guidance of neuroepithelial cells to the axonal growth resembled that seen in the developing cord. Thus the biochemical and morphological data support that the regeneration of the nervous system recaptulates its developmental events, providing evidence for molecular mechanisms underlying central axonal regeneration.  相似文献   

17.
Summary Explants and dissociated cells from normal adult spinal cord and regenerating cord of the teleostApteronotus albifrons were grown in vitro for periods of 8 to 12 wk. During this time the neurons showed extensive neurite outgrowth. Neurite outgrowth from tissue explants and dissociated cells of regenerated spinal cord starts sooner and is more profuse than that from normal (unregenerated) cord. Neurite outgrowth is maximized by using adhesive substrata and a high density of explants or dissociated cells. Inasmuch asApteronotus does regenerate its spinal cord naturally after injury, whereas mammals do not, this culture system will be useful to study factors that control (permit) regeneration of spinal neurons in this adult vertebrate.  相似文献   

18.
19.
Gekko japonicus undergoes dramatic changes in the caudal spinal cord after tail amputation. The amputation induces cell proliferation in the caudal ependymal tube. We performed hematoxylin and eosin staining at different time points in the regeneration process to investigate the morphological characterization of the regenerated appendages. The central canal extended to the blastema post-amputation and the cartilage and muscle tissue appeared 3 weeks after injury. We performed the bromodeoxyuridine (BrdU) incorporation assay to detect proliferating cells during the regeneration process. BrdU positive cells were detected in the peri-central canal. Furthermore, nestin and neuron-specific enolase (NSE) immunocytochemistry were applied to detect neural stem/progenitor cells and neurons. Two weeks after injury, nestin-positive cells undergoing proliferation were located outside of the ependymal tube, and NSE positive cells appeared after 3 weeks of amputation. These data suggest that neurogenesis is an early event during caudal spinal cord regeneration in gecko.  相似文献   

20.
This study examined the time course of mechanical and cold allodynia in rat hindpaw after spinal cord contusion. Hindpaw withdrawal threshold to graded von Frey hair stimulation and withdrawal frequency to acetone application were measured in rats subjected to contusions of varying severity, produced by a MASCIS impactor device with a 10?g weight dropped from 6.25, 12.5, or 25?mm. Mechanical and cold allodynia developed following the injury, and differences in the incidence of allodynia and in withdrawal threshold were significant among these groups. The least severe injury (6.25?mm) most consistently caused a decreased hindpaw threshold to mechanical stimulation and an increased withdrawal frequency to cold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号