首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The SMN protein, which is linked to spinal muscular atrophy (SMA), plays an important role in the assembly of the spliceosomal small nuclear ribonucleoprotein complexes. This function requires binding of SMN to the arginine-glycine (RG) rich C-terminal tails of the Sm proteins, which contain symmetrically dimethylated arginine residues (sDMA) in vivo. Using NMR titrations, we show that the SMN Tudor domain recognizes these sDMAs in the methylated RG repeats. Upon complex formation a cluster of conserved aromatic residues in the SMN Tudor domain interacts with the sDMA methyl groups. We present two high resolution structures of the uncomplexed SMN Tudor domain, a 1.8A crystal structure and an NMR structure that has been refined against a large number of backbone and side-chain residual dipolar couplings. The backbone conformation of both structures is very similar, however, differences are observed for the cluster of conserved aromatic side-chains in the sDMA binding pocket. In order to validate these variations we introduce a novel application of residual dipolar couplings for aromatic rings. We show that structural information can be derived from aromatic ring residual dipolar couplings, even in the presence of internal motions such as ring flipping. These residual dipolar couplings and ring current shifts independently confirm that the SMN Tudor domain adopts two different conformations in the sDMA binding pocket. The observed structural variations may play a role for the recognition of sDMAs.  相似文献   

2.
脊髓性肌萎缩症(spinal muscular atrophy,SMA)是一类与运动神经元存活基因(survival of motor neurons gene,SMN gene)突变有关的神经系统变性疾病,而SMN基因的转录产物即为SMN蛋白(survival of motorneurons protein,SMN protein)。SMN蛋白与多种蛋白结合后发挥作用,如SMN-Sm蛋白的相互作用在富含尿嘧啶的小核核糖核蛋白体(uridine—richsmallribonucleo—proteins,UsnRNPs)转运装配中有重要意义。SMN蛋白是通过其Tudor结构域与剪接体sm蛋白的二甲基化修饰的富含精氨酸一氨基乙酸域(ar—ginineandglycine—rich,RG)结合。  相似文献   

3.
Tudor domains bind symmetrical dimethylated arginines   总被引:8,自引:0,他引:8  
The Tudor domain is an approximately 60-amino acid structure motif in search of a function. Herein we show that the Tudor domains of the spinal muscular atrophy gene product SMN, the splicing factor 30 kDa (SPF30), and the Tudor domain-containing 3 (TDRD3) proteins interacted with arginine-glycine-rich motifs in a methylarginine-dependent manner. The Tudor domains also associated with methylarginine-containing cellular proteins, providing evidence that methylated arginines represent physiological ligands for this protein module. In addition, we report that spliceosomal small nuclear ribonucleoprotein particles core Sm proteins accumulated in the cytoplasm when arginine methylation was inhibited with adenosine dialdehyde or in the presence of an excessive amount of unmethylated arginine-glycine-rich peptides. These data provide in vivo evidence in support of a role for arginine methylation in the proper assembly and localization of spliceosomal Sm proteins.  相似文献   

4.
Disruption of the survival motor neuron (SMN) gene leads to selective loss of spinal motor neurons, resulting in the fatal human neurodegenerative disorder spinal muscular atrophy (SMA). SMN has been shown to function in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and pre-mRNA splicing. We have demonstrated that SMN also interacts with fibrillarin, a highly conserved nucleolar protein that is associated with all Box C/D small nucleolar RNAs and functions in processing and modification of rRNA. Fibrillarin and SMN co-immunoprecipitate from HeLa cell extracts indicating that the proteins exist as a complex in vivo. Furthermore, in vitro binding studies indicate that the interaction between SMN and fibrillarin is direct and salt-stable. We show that the glycine/arginine-rich domain of fibrillarin is necessary and sufficient for SMN binding and that the region of SMN encoded by exon 3, including the Tudor domain, mediates the binding of fibrillarin. Tudor domain missense mutations, including one found in an SMA patient, impair the interaction between SMN and fibrillarin (as well as the common snRNP protein SmB). Our results suggest a function for SMN in small nucleolar RNP biogenesis (akin to its known role as an snRNP assembly factor) and reveal a potential link between small nucleolar RNP biogenesis and SMA.  相似文献   

5.
Zhang R  So BR  Li P  Yong J  Glisovic T  Wan L  Dreyfuss G 《Cell》2011,146(3):384-395
The SMN complex mediates the assembly of heptameric Sm protein rings on small nuclear RNAs (snRNAs), which are essential for snRNP function. Specific Sm core assembly depends on Sm proteins and snRNA recognition by SMN/Gemin2- and Gemin5-containing subunits, respectively. The mechanism by which the Sm proteins are gathered while preventing illicit Sm assembly on non-snRNAs is unknown. Here, we describe the 2.5?? crystal structure of Gemin2 bound to SmD1/D2/F/E/G pentamer and SMN's Gemin2-binding domain, a key assembly intermediate. Remarkably, through its extended conformation, Gemin2 wraps around the crescent-shaped pentamer, interacting with all five Sm proteins, and gripping its bottom and top sides and outer perimeter. Gemin2 reaches into the RNA-binding pocket, preventing RNA binding. Interestingly, SMN-Gemin2 interaction is abrogated by a spinal muscular atrophy (SMA)-causing mutation in an SMN helix that mediates Gemin2 binding. These findings provide insight into SMN complex assembly and specificity, linking snRNP biogenesis and SMA pathogenesis.  相似文献   

6.
Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders.  相似文献   

7.
The survival of motor neurons (SMN) protein, the product of the gene responsible for the motor neuron degenerative disease spinal muscular atrophy (SMA), is part of a large macromolecular complex. The SMN complex is localized in both the cytoplasm and the nucleus and contains SMN, Gemin2, Gemin3, Gemin4, Gemin5, and a few not yet identified proteins. The SMN complex plays a key role in the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and other ribonucleoprotein particles. As a step toward the complete characterization of the components of the SMN complex, we generated stable cell lines that express FLAG-tagged SMN or Gemin2 under the control of a tetracycline-inducible promoter. Native SMN complexes of identical protein composition to those isolated by immunoprecipitation with anti-SMN antibodies were purified by affinity chromatography from extracts of both cell lines. Here we report the identification by mass spectrometry of a novel protein component of the SMN complex termed Gemin6. Co-immunoprecipitation, immunolocalization, and in vitro binding experiments demonstrate that Gemin6 is a component of the SMN complex that localizes to gems and interacts with several Sm proteins of the spliceosomal snRNPs.  相似文献   

8.
To serve in its function as an assembly machine for spliceosomal small nuclear ribonucleoprotein particles (snRNPs), the survival of motor neurons (SMN) protein complex binds directly to the Sm proteins and the U snRNAs. A specific domain unique to U1 snRNA, stem-loop 1 (SL1), is required for SMN complex binding and U1 snRNP Sm core assembly. Here, we show that each of the major spliceosomal U snRNAs (U2, U4, and U5), as well as the minor splicing pathway U11 snRNA, contains a domain to which the SMN complex binds directly and with remarkable affinity (low nanomolar concentration). The SMN-binding domains of the U snRNAs do not have any significant nucleotide sequence similarity yet they compete for binding to the SMN complex in a manner that suggests the presence of at least two binding sites. Furthermore, the SMN complex-binding domain and the Sm site are both necessary and sufficient for Sm core assembly and their relative positions are critical for snRNP assembly. These findings indicate that the SMN complex stringently scrutinizes RNAs for specific structural features that are not obvious from the sequence of the RNAs but are required for their identification as bona fide snRNAs. It is likely that this surveillance capacity of the SMN complex ensures assembly of Sm cores on the correct RNAs only and prevents illicit, potentially deleterious, assembly of Sm cores on random RNAs.  相似文献   

9.
In humans, assembly of spliceosomal snRNPs (small nuclear ribonucleoproteins) begins in the cytoplasm where the multi-protein SMN (survival of motor neuron) complex mediates the formation of a seven-membered ring of Sm proteins on to a conserved site of the snRNA (small nuclear RNA). The SMN complex contains the SMN protein Gemin2 and several additional Gemins that participate in snRNP biosynthesis. SMN was first identified as the product of a gene found to be deleted or mutated in patients with the neurodegenerative disease SMA (spinal muscular atrophy), the leading genetic cause of infant mortality. In the present study, we report the solution structure of Gemin2 bound to the Gemin2-binding domain of SMN determined by NMR spectroscopy. This complex reveals the structure of Gemin2, how Gemin2 binds to SMN and the roles of conserved SMN residues near the binding interface. Surprisingly, several conserved SMN residues, including the sites of two SMA patient mutations, are not required for binding to Gemin2. Instead, they form a conserved SMN/Gemin2 surface that may be functionally important for snRNP assembly. The SMN-Gemin2 structure explains how Gemin2 is stabilized by SMN and establishes a framework for structure-function studies to investigate snRNP biogenesis as well as biological processes involving Gemin2 that do not involve snRNP assembly.  相似文献   

10.
Deletion or mutation of the SMN1 (survival of motor neurons) gene causes the common, fatal neuromuscular disease spinal muscular atrophy. The SMN protein is important in small nuclear ribonucleoprotein (snRNP) assembly and interacts with snRNP proteins via arginine/glycine-rich domains. Recently, SMN was also found to interact with core protein components of the two major families of small nucleolar RNPs, fibrillarin and GAR1, suggesting that SMN may also function in the assembly of small nucleolar RNPs. Here we present results that indicate that the interaction of SMN with GAR1 is mediated by the Tudor domain of SMN. Single point mutations within the Tudor domain, including a spinal muscular atrophy patient mutation, impair the interaction of SMN with GAR1. Furthermore, we find that either of the two arginine/glycine-rich domains of GAR1 can provide for interaction with SMN, but removal of both results in loss of the interaction. Finally, we have found that unlike the interaction of SMN with the Sm snRNP proteins, interaction with GAR1 and fibrillarin is not enhanced by arginine dimethylation. Our results argue against post-translational arginine dimethylation as a general requirement for SMN recognition of proteins bearing arginine/glycine-rich domains.  相似文献   

11.
The survival of motor neurons (SMN) protein complex functions in the biogenesis of spliceosomal small nuclear ribonucleoprotein particles (snRNPs) and prob ably other RNPs. All spliceosomal snRNPs have a common core of seven Sm proteins. To mediate the assembly of snRNPs, the SMN complex must be able to bring together Sm proteins with U snRNAs. We showed previously that SMN and other components of the SMN complex interact directly with several Sm proteins. Here, we show that the SMN complex also interacts specifically with U1 snRNA. The stem--loop 1 domain of U1 (SL1) is necessary and sufficient for SMN complex binding in vivo and in vitro. Substitution of three nucleotides in the SL1 loop (SL1A3) abolishes SMN interaction, and the corresponding U1 snRNA (U1A3) is impaired in U1 snRNP biogenesis. Microinjection of excess SL1 but not SL1A3 into Xenopus oocytes inhibits SMN complex binding to U1 snRNA and U1 snRNP assembly. These findings indicate that SMN complex interaction with SL1 is sequence-specific and critical for U1 snRNP biogenesis, further supporting the direct role of the SMN complex in RNP biogenesis.  相似文献   

12.
The survival of motor neurons (SMN) complex is essential for the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) as it binds to and delivers Sm proteins for assembly of Sm cores on the abundant small nuclear RNAs (snRNAs). Using the conserved snRNAs encoded by the lymphotropic Herpesvirus saimiri (HVS), we determined the specific sequence and structural features of RNAs for binding to the SMN complex and for Sm core assembly. We show that the minimal SMN complex-binding domain in snRNAs, except U1, is comprised of an Sm site (AUUUUUG) and an adjacent 3' stem-loop. The adenosine and the first and third uridines of the Sm site are particularly critical for binding of the SMN complex, which directly contacts the backbone phosphates of these uridines. The specific sequence of the adjacent stem (7 to 12 base pairs)-loop (4 to 17 nucleotides) is not important for SMN complex binding, but it must be located within a short distance of the 3' end of the RNA for an Sm core to assemble. Importantly, these defining characteristics are discerned by the SMN complex and not by the Sm proteins, which can bind to and assemble on an Sm site sequence alone. These findings demonstrate that the SMN complex is the identifier, as well as assembler, of the abundant class of snRNAs in cells because it is able to recognize an snRNP code that they contain.  相似文献   

13.
Biomolecular condensates (BMCs) can facilitate or inhibit diverse cellular functions. BMC formation is driven by noncovalent protein–protein, protein–RNA, and RNA–RNA interactions. Here, we focus on Tudor domain-containing proteins – such as survival motor neuron protein (SMN) – that contribute to BMC formation by binding to dimethylarginine (DMA) modifications on protein ligands. SMN is present in RNA-rich BMCs, and its absence causes spinal muscular atrophy (SMA). SMN’s Tudor domain forms cytoplasmic and nuclear BMCs, but its DMA ligands are largely unknown, highlighting open questions about the function of SMN. Moreover, DMA modification can alter intramolecular interactions and affect protein localization. Despite these emerging functions, the lack of direct methods of DMA detection remains an obstacle to understanding Tudor–DMA interactions in cells.  相似文献   

14.
A macromolecular complex containing survival of motor neurons (SMN), the spinal muscular atrophy protein, and Gemin2-7 interacts with Sm proteins and snRNAs to carry out the assembly of these components into spliceosomal small nuclear ribonucleoproteins (snRNPs). Here we report the characterization of unr-interacting protein (unrip), a GH-WD protein of unknown function, as a component of the SMN complex that interacts directly with Gemin6 and Gemin7. Unrip also binds a subset of Sm proteins, and unrip-containing SMN complexes are necessary and sufficient to mediate the assembly of spliceosomal snRNPs. These results demonstrate that unrip functions in the pathway of snRNP biogenesis and is a marker of cellular SMN complexes active in snRNP assembly.  相似文献   

15.
The survival of motor neurons (SMN) protein, the product of the neurodegenerative disease spinal muscular atrophy (SMA) gene, is localized both in the cytoplasm and in discrete nuclear bodies called gems. In both compartments SMN is part of a large complex that contains several proteins including Gemin2 (formerly SIP1) and the DEAD box protein Gemin3. In the cytoplasm, the SMN complex is associated with snRNP Sm core proteins and plays a critical role in spliceosomal snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing by serving in the regeneration of spliceosomes. These functions are likely impaired in cells of SMA patients because they have reduced levels of functional SMN. Here, we report the identification by nanoelectrospray mass spectrometry of a novel component of the SMN complex that we name Gemin4. Gemin4 is associated in vivo with the SMN complex through a direct interaction with Gemin3. The tight interaction of Gemin4 with Gemin3 suggests that it could serve as a cofactor of this DEAD box protein. Gemin4 also interacts directly with several of the Sm core proteins. Monoclonal antibodies against Gemin4 efficiently immunoprecipitate the spliceosomal U snRNAs U1 and U5 from Xenopus oocytes cytoplasm. Immunolocalization experiments show that Gemin4 is colocalized with SMN in the cytoplasm and in gems. Interestingly, Gemin4 is also detected in the nucleoli, suggesting that the SMN complex may also function in preribosomal RNA processing or ribosome assembly.  相似文献   

16.
The U1, U2, U4, U5, and U6 small nuclear ribonucleoproteins (snRNPs) form essential components of spliceosomes, the machinery that removes introns from pre-mRNAs in eukaryotic cells. A critical initial step in the complex process of snRNP biogenesis is the assembly of a group of common core proteins (Sm proteins) on spliceosomal snRNA. In this study we show by multiple independent methods that the protein pICln associates with Sm proteins in vivo and in vitro. The binding of pICln to Sm proteins interferes with Sm protein assembly on spliceosomal snRNAs and inhibits import of snRNAs into the nucleus. Furthermore, pICln prevents the interaction of Sm proteins with the survival of motor neurons (SMN) protein, an interaction that has been shown to be critical for snRNP biogenesis. These findings lead us to propose a model in which pICln participates in the regulation of snRNP biogenesis, at least in part by interfering with Sm protein interaction with SMN protein.  相似文献   

17.
18.
The axonal survival of motor neuron (a-SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a-SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the role of a-SMN in SMA is unknown. As a first step to verify a link between a-SMN and SMA, we investigated by means of over-expression experiments in neuroblastoma-spinal cord hybrid cell line (NSC34) whether SMA pathogenic mutations located in the N-terminal part of the protein affected a-SMN function. We demonstrated here that either SMN1 missense mutations or small intragenic re-arrangements located in the Tudor domain consistently altered the a-SMN capability of inducing axonal elongation in vitro. Mutated human a-SMN proteins determined in almost all NSC34 motor neurons the growth of short axons with prominent morphologic abnormalities. Our data indicate that the Tudor domain is critical in dictating a-SMN function possibly because it is an association domain for proteins involved in axon growth. They also indicate that Tudor domain mutations are functionally relevant not only for FL-SMN but also for a-SMN, raising the possibility that also a-SMN loss of function may contribute to the pathogenic steps leading to SMA.  相似文献   

19.
Meister G  Fischer U 《The EMBO journal》2002,21(21):5853-5863
Although spliceosomal Sm proteins can assemble spontaneously onto UsnRNA in vitro, this process requires assisting factors in vivo. SMN, the protein involved in spinal muscular atrophy, is part of a complex that contains the Sm proteins and serves as a critical factor for this reaction. Here, we have reconstituted the SMN-dependent assembly of UsnRNPs in vitro. We demonstrate that the SMN complex is necessary and sufficient for the assembly reaction. The PRMT5 complex, previously implicated in methylation and storage of Sm proteins, interacts with the SMN complex and enhances its activity in an ATP-dependent manner. These data uncover the SMN-PRMT5 complex as a functional entity that promotes the assisted assembly of spliceosomal UsnRNPs, and potentially other, RNA-protein complexes.  相似文献   

20.
Seven Sm proteins (B/B', D1, D2, D3, E, F and G proteins) containing a common sequence motif form a globular core domain within the U1, U2, U5 and U4/U6 spliceosomal snRNPs. Based on the crystal structure of two Sm protein dimers we have previously proposed a model of the snRNP core domain consisting of a ring of seven Sm proteins. This model postulates that there is only a single copy of each Sm protein in the core domain. In order to test this model we have determined the stoichiometry of the Sm proteins in yeast spliceosomal snRNPs. We have constructed seven different yeast strains each of which produces one of the Sm proteins tagged with a calmodulin-binding peptide (CBP). Further, each of these strains was transformed with one of seven different plasmids coding for one of the seven Sm proteins tagged with protein A. When one Sm protein is expressed as a CBP-tagged protein from the chromosome and a second protein was produced with a protein A-tag from the plasmid, the protein A-tag was detected strongly in the fraction bound to calmodulin beads, demonstrating that two different tagged Sm proteins can be assembled into functional snRNPs. In contrast when the CBP and protein A-tagged forms of the same Sm protein were co-expressed, no protein A-tag was detectable in the fraction bound to calmodulin. These results indicate that there is only a single copy of each Sm protein in the spliceosomal snRNP core domain and therefore strongly support the heptamer ring model of the spliceosomal snRNP core domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号