首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulation of oxidized extracellular matrix between endothelium and muscle is an important risk factor in the endothelium-myocytes uncoupling in congestive heart failure. Although ventricular remodeling is accompanied by increased matrix metalloproteinase (MMP)-9 activity, it is unclear whether MMP-9 plays a role in endothelial apoptosis in chronic volume overload congestive heart failure. We tested the hypothesis that, in chronic volume overload, myocardial dysfunction involves endocardial endothelial (EE) apoptosis in response to MMP-9 activation, extracellular matrix accumulation, and endothelium-myocytes uncoupling. Arteriovenous fistula (AVF) was created in control (FVB/NJ) and MMP-9 knockout (MMP-9KO; FVB.Cg-MMP9(tm1Tvu)/J) mice. Sham surgery was used as control. Mice were grouped as follows: wild type, n = 3 (sham control); MMP-9KO, n = 3 (sham); AVF, n = 3; and MMP-9KO + AVF (n = 3). Heart function was analyzed by M-mode and Doppler echocardiography, and with a pressure-tipped Millar catheter placed in the left ventricle of anesthetized mice 8 wk after AVF. Apoptosis was detected by measuring caspase-3, transferase-mediated dUTP nick-end labeling (TUNEL), and CD-31 by immunolabeling. Protease-activated receptors-1, connexin-43, and a disintegrin and MMP-12 (ADAM-12) expression were measured by Western blot analyses. MMP-2 and MMP-9 expression were measured by quantitative RT-PCR. Compared with control, AVF caused an increase in left ventricle end diastolic pressure and decrease in -dP/dt. In contrast, in the MMP-9KO + AVF group, these variables were changed toward control levels. Increased EE apoptosis (caspase-3 activation and TUNEL/CD-31 colabeling) in AVF mice was prevented in the MMP-9KO + AVF group. Protease-activated receptor-1, connexin-43, and ADAM-12 were induced in AVF. MMP-9 gene ablation ameliorated the induction. The results suggest that impaired cardiac function in volume overload is associated with EE apoptosis, cardiac remodeling, and endothelium-myocytes uncoupling in response to MMP-9 activation.  相似文献   

2.
We examined the hypothesis that oxidants generated nitroso derivatives, activated latent matrix metalloproteinase (MMP), and induced proteinase-activated receptor 1 (PAR-1), leading to disconnection between the endothelium and myocytes. Administration of cardiospecific tissue inhibitor of metalloproteinase-4 (TIMP-4/CIMP) ameliorated the oxidative-proteolytic stress and endothelial-myocyte uncoupling in chronic heart failure (CHF) in mice. Aortic-vena cava fistula (AVF) was created in 30 male mice (C57BL/6J) and studied at 0-, 2-, and 8-wk AVF. To reverse cardiac remodeling, as measured by MMP activation, purified CIMP was administered by an osmotic minipump subcutaneously after 8-wk AVF, and groups of mice (n = 6 mice/group) were examined after 12 and 16 wk. Levels of PAR-1 in the left ventricle (LV) were increased at 2 and 8 wk (compared with 0 wk of no CIMP treatment) but were normal at 12 and 16 wk after CIMP treatment, as measured by Western blot analysis. Similar results were obtained for LV levels of nitrotyrosine, MMP-2 and -9 activities, and TIMP-1 and -3. However, the levels of TIMP-4, endothelial cell density, and responses of cardiac rings to acetylcholine and bradykinin were attenuated at 2 and 8 wk and normalized after CIMP administration in AVF mice. CIMP induced nitric oxide in microvascular endocardial endothelial cells. The results suggest that nitro generation activated MMP and PAR-1, leading to endothelial-myocyte uncoupling. CIMP treatment normalized PAR-1 expression and ameliorated endothelial-myocyte uncoupling by decreasing oxidant-mediated proteolytic stress in CHF.  相似文献   

3.
Matrix metalloproteinase-2 (MMP-2) is prominently overexpressed both after myocardial infarction (MI) and in heart failure. However, its pathophysiological significance in these conditions is still unclear. We thus examined the effects of targeted deletion of MMP-2 on post-MI left ventricular (LV) remodeling and failure. Anterior MI was produced in 10- to 12-wk-old male MMP-2 knockout (KO) and sibling wild-type (WT) mice by ligating the left coronary artery. By day 28, MI resulted in a significant increase in mortality in association with LV cavity dilatation and dysfunction. The MMP-2 KO mice had a significantly better survival rate than WT mice (56% vs. 85%, P < 0.05), despite a comparable infarct size (50 +/- 3% vs. 51 +/- 3%, P = not significant), heart rate, and arterial blood pressure. The KO mice had a significantly lower incidence of LV rupture (10% vs. 39%, P < 0.05), which occurred within 7 days of MI. The KO mice exerted less LV cavity dilatation and improved fractional shortening after MI by echocardiography. The LV zymographic MMP-2 level significantly increased in WT mice after coronary artery ligation; however, this was completely prevented in KO mice. In contrast, the increase in the LV zymographic MMP-9 level after MI was similar between KO and WT mice. MMP-2 activation is therefore considered to contribute to an early cardiac rupture as well as late LV remodeling after MI. The inhibition of MMP-2 activation may therefore be a potentially useful therapeutic strategy to manage post-MI hearts.  相似文献   

4.
Extracellular matrix (ECM) turnover is regulated by matrix metalloproteinases (MMPs) and plays an important role in cardiac remodeling. Previous studies from our lab demonstrated an increase in gelatinolytic-MMP-2 and -9 activities in endocardial tissue from ischemic cardiomyopathic (ICM) and idiopathic dilated cardiomyopathic (DCM) hearts. The signaling mechanism responsible for the left ventricular (LV) remodeling, however, is unclear. Administration of cardiac specific inhibitor of metalloproteinase (CIMP) prevented the activation of MMP-2 and -9 in ailing to failing myocardium. Activation of MMP-2 and -9 leads to induction of proteinase activated receptor-1 (PAR-1). We hypothesize that the early induction of MMP-9 is a key regulator for modulating intracellular signaling through activation of PAR and various downstream events which are implicated in development of cardiac fibrosis in an extracellular receptor mediated kinase-1 (ERK-1) and focal adhesion kinase (FAK) dependent manner. To test this hypothesis, explanted human heart tissues from ICM and DCM patients were obtained at the time of orthotopic cardiac transplants. Quantitative analysis of MMP-2 and -9 gelatinolytic activities was made by real-time quantitative zymography. Gel phosphorylation staining for PAR-1 showed a significant increase in ICM hearts. Western blot and RT-PCR analysis and in-situ labeling, showed significant increased expression of PAR-1, ERK-1and FAK in ICM and DCM. These observations suggest that the enhanced expression and potentially increased activity of LV myocardial MMP-9 triggers the signal cascade instigating cardiac remodeling. This early mechanism for the initiation of LV remodeling appears to have a role in end-stage human heart failure.  相似文献   

5.
Blood pressure increases with age, and dysfunction of the dopamine D3 receptor has been implicated in the pathogenesis of hypertension. To evaluate the role of the D3 receptor in aging-related hypertension, we assessed cardiac structure and function in differently aged (2 mo, 1 yr, 2 yr) wild type (WT) and young (2 mo) D3 receptor knockout mice (D3KO). In WT, systolic and diastolic blood pressures and rate-pressure product (RPP) significantly increased with age, while heart rate significantly decreased. Blood pressure values, heart rate and RPP of young D3KO were significantly elevated over age-matched WT, but similar to those of the 2 yr old WT. Echocardiography revealed that the functional measurements of ejection fraction and fractional shortening decreased significantly with age in WT and that they were significantly smaller in D3KO compared to young WT. Despite this functional change however, cardiac morphology remained similar between the age-matched WT and D3KO. Additional morphometric analyses confirmed an aging-related increase in left ventricle (LV) and myocyte cross-sectional areas in WT, but found no difference between age-matched young WT and D3KO. In contrast, interstitial fibrosis, which increased with age in WT, was significantly elevated in the D3KO over age-matched WT, and similar to 2 yr old WT. Western analyses of myocardial homogenates revealed significantly increased levels of pro- and mature collagen type I in young D3KO. Column zymography revealed that activities of myocardial MMP-2 and MMP-9 increased with age in WTs, but in D3KO, only MMP-9 activity was significantly increased over age-matched WTs. Our data provide evidence that the dopamine D3 receptor has a critical role in the emergence of aging-related cardiac fibrosis, remodeling, and dysfunction.  相似文献   

6.
Nicotinamide riboside kinase-2 (NRK-2), a muscle-specific β1 integrin binding protein, predominantly expresses in skeletal muscle with a trace amount expressed in healthy cardiac tissue. NRK-2 expression dramatically increases in mouse and human ischemic heart however, the specific role of NRK-2 in the pathophysiology of ischemic cardiac diseases is unknown.We employed NRK2 knockout (KO) mice to identify the role of NRK-2 in ischemia-induced cardiac remodeling and dysfunction. Following myocardial infarction (MI), or sham surgeries, serial echocardiography was performed in the KO and littermate control mice. Cardiac contractile function rapidly declined and left ventricular interior dimension (LVID) was significantly increased in the ischemic KO vs. control mice at 2 weeks post-MI. An increase in mortality was observed in the KO vs. control group. The KO hearts displayed increased cardiac hypertrophy and heart failure reflected by morphometric analysis. Consistently, histological assessment revealed an extensive and thin scar and dilated LV chamber accompanied with elevated fibrosis in the KOs post-MI. Mechanistically, we observed that loss of NRK-2 enhanced p38α activation following ischemic injury. Consistently, ex vivo studies demonstrated that the gain of NRK-2 function suppresses the p38α as well as fibroblast activation (α-SMA expression) upon TGF-β stimulation, and limits cardiomyocytes death upon hypoxia/re‑oxygenation.Collectively our findings show, for the first time, that NRK-2 plays a critical role in heart failure progression following ischemic injury. NRK-2 deficiency promotes post-MI scar expansion, rapid LV chamber dilatation, cardiac dysfunction and fibrosis possibly due to increased p38α activation.  相似文献   

7.
The agonists of peroxisome proliferator-activated receptor-gamma (PPARgamma) ameliorate cardiovascular complications associated with diabetes mellitus. We tested the hypothesis that recovery from ailing to failing myocardium in diabetes by PPARgamma agonist is in part due to decreased matrix metalloproteinase-9 (MMP-9) activation and left ventricular (LV) tissue levels of homocysteine (Hcy). C57BL/6J mice were made diabetic (D) by feeding them a high-fat calorie diet. PPARgamma was activated by adding pioglitazone (Pi) to the diet. After 6 wk, mice were grouped into: normal calorie diet (N), D, N + Pi and D + Pi (n = 6 in each group). LV variables were measured by echocardiography, endothelial-myocyte (E-M) coupling was measured in cardiac rings, and MMP-9 activation was measured by zymography. Blood glucose levels were twofold higher in D mice compared with N mice. Pi decreased the levels of glucose in D mice to the levels in N mice. LV Hcy levels were 3.5 +/- 0.5 microM in N groups compared with 12.4 +/- 0.6 microM in D groups. Treatment with Pi normalized the LV levels of Hcy but had no effect on plasma levels of Hcy. In the D group, LV contraction was reduced compared with that of the N group and was ameliorated by treatment with Pi. LV wall thickness was reduced to 0.25 +/- 0.02 mm in the D group compared with 0.42 +/- 0.01 mm in the N group. LV diastolic diameter was 3.05 +/- 0.01 mm in the D group compared with 2.20 +/- 0.02 mm in the N group. LV systolic diameter was 1.19 +/- 0.02 mm in the D group and 0.59 +/- 0.01 mm in the N group. Pi normalized the LV variables in D mice. The responses to ACh and nitroprusside were attenuated in diabetic hearts, suggesting that there was E-M uncoupling in the D group compared with the N group, which was ameliorated by Pi. Plasma and LV levels of MMP-2 and -9 activities were higher in the D group than in the N group but normalized after Pi treatment. These results suggest that E-M uncoupling in the myocardium, in part, is due to increased MMP activities secondary to suppressing PPARgamma activity in high-fat, calorie-induced Type 2 diabetes mellitus.  相似文献   

8.
Osteopontin (OPN) plays an important role in left ventricular (LV) remodeling after myocardial infarction (MI) by promoting collagen synthesis and accumulation. This study tested the hypothesis that MMP inhibition modulates post-MI LV remodeling in mice lacking OPN. Wild-type (WT) and OPN knockout (KO) mice were treated daily with MMP inhibitor (PD166793, 30 mg/kg/day) starting 3 days post-MI. LV functional and structural remodeling was measured 14 days post-MI. Infarct size was similar in WT and KO groups with or without MMP inhibition. M-mode echocardiography showed greater increase in LV end-diastolic (LVEDD) and end-systolic diameters (LVESD) and decrease in percent fractional shortening (%FS) and ejection fraction in KO-MI versus WT-MI. MMP inhibition decreased LVEDD and LVESD, and increased %FS in both groups. Interestingly, the effect was more pronounced in KO-MI group versus WT-MI (P < 0.01). MMP inhibition significantly decreased post-MI LV dilation in KO-MI group as measured by Langendorff-perfusion analysis. MMP inhibition improved LV developed pressures in both MI groups. However, the improvement was significantly higher in KO-MI group versus WT-MI (P < 0.05). MMP inhibition increased heart weight-to-body weight ratio, myocyte cross-sectional area, fibrosis and septal wall thickness only in KO-MI. Percent apoptotic myocytes in the non-infarct area was not different between the treatment groups. Expression and activity of MMP-2 and MMP-9 in the non-infarct area was higher in KO-MI group 3 days post-MI. MMP inhibition reduced MMP-2 activity in KO-MI with no effect on the expression of TIMP-2 and TIMP-4 14 days post-MI. Thus, activation of MMPs contributes to reduced fibrosis and LV dysfunction in mice lacking OPN.  相似文献   

9.
Myocardial remodeling after myocardial infarction (MI) is associated with increased levels of the matrix metalloproteinases (MMPs). Levels of two MMP species, MMP-2 and MMP-9, are increased after MI, and transgenic deletion of these MMPs attenuates post-MI left ventricular (LV) remodeling. This study characterized the spatiotemporal patterns of gene promoter induction for MMP-2 and MMP-9 after MI. MI was induced in transgenic mice in which the MMP-2 or MMP-9 promoter sequence was fused to the beta-galactosidase reporter, and reporter level was assayed up to 28 days after MI. Myocardial localization with respect to cellular sources of MMP-2 and MMP-9 promoter induction was examined. After MI, LV diameter increased by 70% (P < 0.05), consistent with LV remodeling. beta-Galactosidase staining in MMP-2 reporter mice was increased by 1 day after MI and increased further to 64 +/- 6% of LV epicardial area by 7 days after MI (P < 0.05). MMP-2 promoter activation occurred in fibroblasts and myofibroblasts in the MI region. In MMP-9 reporter mice, promoter induction was detected after 3 days and peaked at 7 days after MI (53 +/- 6%, P < 0.05) and was colocalized with inflammatory cells at the peri-infarct region. Although MMP-2 promoter activation was similarly distributed in the MI and border regions, activation of the MMP-9 promoter was highest at the border between the MI and remote regions. These unique findings visually demonstrated that activation of the MMP-2 and MMP-9 gene promoters occurs in a distinct spatial relation with reference to the MI region and changes in a characteristic time-dependent manner after MI.  相似文献   

10.
Left ventricular (LV) pressure (PO) or volume (VO) overload is accompanied by myocardial remodeling, but mechanisms that contribute to this progressive remodeling process remain unclear. The matrix metalloproteinases (MMPs) contribute to tissue remodeling in a number of disease states. This study tested the hypothesis that increased MMP expression and activity occur after the induction of an LV overload, which is accompanied by a loss of endogenous MMP inhibitory control. LV MMP zymographic activity and species abundance were measured in dogs under the following conditions: acute PO induced by ascending aortic balloon inflation (6 h, n = 9), prolonged PO by aortic banding (10 days, n = 5), acute VO through mitral regurgitation secondary to chordal rupture (6 h, n = 6), prolonged VO due to mitral regurgitation (14 days, n = 7), and sham controls (n = 11). MMP zymographic activity in the 92-kDa region, indicative of MMP-9 activity, increased over threefold in acute PO and VO and fell to control levels in prolonged PO and VO. The MMP-9 activity-to-abundance ratio increased by over fourfold with acute VO and twofold in acute PO, suggesting a loss of inhibitory control. Endogenous MMP inhibitor content was unchanged with either PO or VO. Interstitial collagenase (MMP-1) content decreased by 50% with acute VO but not with acute PO. Stromelysin (MMP-3) levels increased by 40% with acute VO and increased by 80% with prolonged PO. Although changes in LV myocardial MMP activity and inhibitory control occurred in both acute and prolonged PO and VO states, these changes were not identical. These results suggest that the type of overload stimulus may selectively influence myocardial MMP activity and expression, which in turn would affect the overall LV myocardial remodeling process in LV overload.  相似文献   

11.
The aim of the present study was to investigate the importance of tumor necrosis factor (TNF)-alpha receptor-1 (TNFR1)-mediated pathways in a murine model of myocardial infarction and remodeling. One hundred and ninety-four wild-type (WT) and TNFR1 gene-deleted (TNFR1KO) mice underwent left coronary artery ligation to induce myocardial infarction. On days 1, 3, 7, and 42, mice underwent transesophageal echocardiography. Hearts were weighed, and the left ventricle (LV) was assayed for matrix metalloproteinase (MMP)-2 and -9 activity and for tissue inhibitor of MMP (TIMP)-1 and -2 expression. Deletion of the TNFR1 gene substantially improved survival because no deaths were observed in TNFR1KO mice versus 56.4% and 18.2% in WT males and females, respectively (P < 0.002). At 42 days, LV remodeling, assessed by LV function (fractional area change of 31.9 +/- 7.9%, 32.2 +/- 7.7%, and 21.6 +/- 7.1% in TNFR1KO males, TNFR1KO females, and WT females, respectively, P < 0.04), and hypertrophy (heart weight-to-body weight ratios of 5.435 +/- 0.986, 5.485 +/- 0.677, and 6.726 +/- 0.704 mg/g, P < 0.04) were ameliorated in TNFR1KO mice. MMP-9 activity was highest at 3 days postinfarction and was highest in WT males (1.9 +/- 0.4 4, 3.6 +/- 0.24, 1.15 +/- 0.28, and 1.3 +/- 1.2 ng/100 microg protein, respectively, in TNFR1KO males, WT males, TNFR1KO females, and WT females, respectively, P < 0.002), whereas at 3 days TIMP-1 mRNA fold upregulation compared with type- and sex-matched controls was lowest in WT males (138.32 +/- 13.05, 46.74 +/- 5.43, 186.09 +/- 28.07, and 101.76 +/- 22.48, respectively, P < 0.002). MMP-2 and TIMP-2 increased similarly in all infarcted groups. These findings suggest that the benefits of TNFR1 ablation might be attributable at least in part to the attenuation of cytokine-mediated imbalances in MMP-TIMP activity.  相似文献   

12.
Thoracic X-ray therapy (XRT), used in cancer treatment, is associated with increased risk of heart failure. XRT-mediated injury to the heart induces an inflammatory response leading to cardiomyopathy. The aim of this study was to determine the role of interleukin (IL)-1 in response to XRT injury to the heart and on the cardiomyopathy development in the mouse. Female mice with genetic deletion of the IL-1 receptor type I (IL-1R1 knockout mice [IL-1R1 KO]) and treatment with recombinant human IL-1 receptor antagonist anakinra, 10 mg/kg twice daily for 7 d, were used as independent approaches to determine the role of IL-1. Wild-type (wt) or IL-1R1 KO mice were treated with a single session of XRT (20 or 14 gray [Gy]). Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson’s trichrome was used to assess myocardial fibrosis and pericardial thickening. After 20 Gy, the contractile reserve was impaired in wt mice at d 3, and the LV ejection fraction (EF) was reduced after 4 months when compared with sham-XRT. IL-1R1 KO mice had preserved contractile reserve at 3 d and 4 months and LVEF at 4 months after XRT. Anakinra treatment for 1 d before and 7 d after XRT prevented the impairment in contractile reserve. A significant increase in LV end-diastolic pressure, associated with increased myocardial interstitial fibrosis and pericardial thickening, was observed in wt mice, as well as in IL-1R1 KO–or anakinra-treated mice. In conclusion, induction of IL-1 by XRT mediates the development of some, such as the contractile impairment, but not all aspects of the XRT-induced cardiomyopathy, such as myocardial fibrosis or pericardial thickening.  相似文献   

13.
Although matrix metalloproteinase-9 (MMP‐9) is involved in cardiomyocytes contractility dysfunction, tissue inhibitor of metalloproteinase-4 (TIMP‐4) mitigates the effect of MMP‐9, and proteinase-activated receptor-1 (PAR‐1, a G-protein couple receptor, GPCR) is involved in the signaling cascade of MMP‐9-mediated cardiac dysfunction, the mechanism(s) are unclear. To test the hypothesis that induction of dicer and differential expression of microRNAs (miRNAs) contribute, in part, to the down regulation of sarcoplasmic reticulum calcium ATPase isoform 2a (serca-2a) in MMP-9 and PAR-1-mediated myocytes dysfunction, ventricular cardiomyocytes were isolated from C57BL/6J mice and treated with 3 ng/ml of MMP-9, 12 ng/ml of TIMP-4, and 10 and 100 μM of PAR-1 antagonist with MMP-9. Specific role of MMP-9 was determined by using MMP-9 knock out (MMP-9KO) and their corresponding control (FVB) mice. Ion Optics video-edge detection system and Fura 2-AM loading were used for determining the contractility and calcium release from cardiomyocytes. Quantitative and semi-quantitative PCR were used to determine the expression of dicer, TIMP-4 and serca-2a. miRNA microarrays were used for assessing the expression of different miRNAs between MMP-9KO and FVB cardiomyocytes. The results suggest that MMP‐9 treatment attenuates the voltage‐induced contraction of primary cardiomyocytes while TIMP‐4, an inhibitor of MMP‐9, reverses the inhibition. MMP‐9 treatment is also associated with reduced Ca2+ transients. This effect is blocked by a PAR‐1 antagonist, suggesting that PAR‐1 mediates this effect. The effect is not as great at high concentrations (100 μM) perhaps due to mild toxicity. The PAR‐1 antagonist effect did not affect calcium transients unlike TIMP‐4. Interestingly, we show that MMP‐KO myocytes contract more rapidly and release more Ca2+ than FVB. The relevant RNA species serca-2a is induced and dicer is inhibited. There is selective inhibition of miR-376b and over-expression of miR-1, miR-26a, miR-30d, and miR-181c in MMP‐9KO that are implicated in regulation of G-PCR and calcium handling.  相似文献   

14.
Caveolin (Cav)-1 has been involved in the pathogenesis of ischemic injuries. For instance, modulations of Cav-1 expression have been reported in animal models of myocardial infarction and cerebral ischemia-reperfusion. Furthermore, ablation of the Cav-1 gene in mice has been shown to increase the extent of ischemic injury in models of cerebral and hindlimb ischemia. Cav-1 has also been suggested to play a role in myocardial ischemic preconditioning. However, the role of Cav-1 in myocardial ischemia (MI)-induced cardiac dysfunction still remains to be determined. We determined the outcome of a permanent left anterior descending coronary artery (LAD) ligation in Cav-1 knockout (KO) mice. Wild-type (WT) and Cav-1 KO mice were subjected to permanent LAD ligation for 24 h. The progression of ischemic injury was monitored by echocardiography, hemodynamic measurements, 2,3,5-triphenyltetrazolium chloride staining, β-binding analysis, cAMP level measurements, and Western blot analyses. Cav-1 KO mice subjected to LAD ligation display reduced survival compared with WT mice. Despite similar infarct sizes, Cav-1 KO mice subjected to MI showed reduced left ventricular (LV) ejection fraction and fractional shortening as well as increased LV end-diastolic pressures compared with their WT counterparts. Mechanistically, Cav-1 KO mice subjected to MI exhibit reduced β-adrenergic receptor density at the plasma membrane as well as decreased cAMP levels and PKA phosphorylation. In conclusion, ablation of the Cav-1 gene exacerbates cardiac dysfunction and reduces survival in mice subjected to MI. Mechanistically, Cav-1 KO mice subjected to LAD ligation display abnormalities in β-adrenergic signaling.  相似文献   

15.
16.
Rac1-GTPase activation plays a key role in the development and progression of cardiac remodeling. Therefore, we engineered a transgenic mouse model by overexpressing cDNA of a constitutively active form of Zea maize Rac gene (ZmRacD) specifically in the hearts of FVB/N mice. Echocardiography and MRI analyses showed cardiac hypertrophy in old transgenic mice, as evidenced by increased left ventricular (LV) mass and LV mass-to-body weight ratio, which are associated with relative ventricular chamber dilation and systolic dysfunction. LV hypertrophy in the hearts of old transgenic mice was further confirmed by an increased heart weight-to-body weight ratio and histopathology analysis. The cardiac remodeling in old transgenic mice was coupled with increased myocardial Rac-GTPase activity (372%) and ROS production (462%). There were also increases in α(1)-integrin (224%) and β(1)-integrin (240%) expression. This led to the activation of hypertrophic signaling pathways, e.g., ERK1/2 (295%) and JNK (223%). Pravastatin treatment led to inhibition of Rac-GTPase activity and integrin signaling. Interestingly, activation of ZmRacD expression with thyroxin led to cardiac dilation and systolic dysfunction in adult transgenic mice within 2 wk. In conclusion, this is the first study to show the conservation of Rho/Rac proteins between plant and animal kingdoms in vivo. Additionally, ZmRacD is a novel transgenic model that gradually develops a cardiac phenotype with aging. Furthermore, the shift from cardiac hypertrophy to dilated hearts via thyroxin treatment will provide us with an excellent system to study the temporal changes in cardiac signaling from adaptive to maladaptive hypertrophy and heart failure.  相似文献   

17.
Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant disease characterized by left ventricular hypertrophy (LVH) predominantly affecting the interventricular septum. Cardiac myosin-binding protein C (cMyBP-C) mutations are common causes of FHC. Gene expression profiling was performed in left ventricles of 9-week-old wild-type mice, heterozygous cMyBP-C KO mice displaying asymmetric septal hypertrophy, and homozygous mice developing eccentric LVH. Knocking out one or two cMyBP-C genes leads primarily to gene expression changes indicating an increased energy demand, activation of the JNK and p38 parts of the MAPK pathway and deactivation of the ERK part, and induction of apoptosis. Altered gene expression for processes related to cardiac structure, contractile proteins, and protein turnover was also identified. Many of the changes were more pronounced in the homozygous KO mice. These alterations point to physiological and pathological adaptations in the prehypertrophic heterozygous KO mice and the hypertrophic homozygous mice.  相似文献   

18.
Production of proinflammatory cytokines contributes to cardiac dysfunction during ischemia-reperfusion. The principal mechanism responsible for the induction of this innate stress response during periods of myocardial ischemia-reperfusion remains unknown. Toll-like receptor 2 (TLR2) is a highly conserved pattern recognition receptor that has been implicated in the innate immune response to a variety of pathogens. However, TLR2 may also mediate inflammation in response to noninfectious injury. We therefore hypothesized that TLR2 is essential for modulating myocardial inflammation and left ventricular (LV) function during ischemia-reperfusion injury. Susceptibility to myocardial ischemia-reperfusion injury following ischemia-reperfusion was determined in Langendorff-perfused hearts isolated from wild-type mice and mice deficient in TLR2 (TLR2D) and Toll interleukin receptor domain-containing adaptor protein. After ischemia-reperfusion, contractile performance was significantly impaired in hearts from wild-type mice as demonstrated by a lower recovery of LV developed pressure relative to TLR2D hearts. Creatinine kinase levels were similar in both groups after reperfusion. Contractile dysfunction in wild-type hearts was associated with elevated cardiac levels of TNF and IL-1beta. Ischemia-reperfusion-induced LV dysfunction was reversed by treatment with the recombinant TNF blocking protein etanercept. These studies show for the first time that TLR2 signaling importantly contributes to the LV dysfunction that occurs following ischemia-reperfusion. Thus disruption of TLR2-mediated signaling may be helpful to induce immediate or delayed myocardial protection from ischemia-reperfusion injury.  相似文献   

19.
Activation of matrix metalloproteinases (MMPs) in the heart is known to facilitate cardiac remodeling and progression to failure. We hypothesized that regional dyskinetic wall motion of the left ventricle would stimulate activation of MMPs. Abnormal wall motion at a target site on the anterior lateral wall of the left ventricle was induced by pacing atrial and ventricular sites of five open-chest anesthetized dogs. Changes in shortening at the left ventricular (LV) pacing site and at a remote site at the anterior base of the left ventricle were monitored with piezoelectric crystals. Simultaneous atrial and ventricular pacing resulted in abnormal motion at the LV pacing site, yielding early shortening and late systolic lengthening, whereas the shortening pattern at the remote site remained unaffected. Assessment of global myocardial MMP activity showed a sevenfold increase in substrate cleavage (P < 0.02) at the LV pacing site relative to the remote site. Gelatin zymography revealed increases in 92-kDa MMP-9 activity and 86-kDa MMP-9 activity at the LV pacing site relative to the remote site, whereas MMP-2 activity was unaffected. Abnormal wall motion was associated with increases in collagen degradation (approximately 2-fold; P < 0.03), plasmin activity (approximately 1.5-fold; P < 0.05), nitrotyrosine levels (approximately 20-fold; P = 0.05), and inflammatory infiltrate (approximately 2-fold; P < 0.02) relative to the remote site. Results indicate that regional dyskinesis induced by epicardial activation is sufficient to stimulate significant MMP activity in the heart, suggesting that abnormal wall motion is a stimulus for MMP activation.  相似文献   

20.
Left ventricular (LV) remodeling is known to contribute to morbidity and mortality after myocardial infarction (MI). Because LV remodeling is strongly associated with an inflammatory response, we investigated whether or not TLR-4 influences LV remodeling and survival in a mice model of MI. Six days after MI induction, TLR4 knockout (KO)-MI mice showed improved LV function 32 and reduced LV remodeling as indexed by reduced levels of atrial natriuretic factor and total collagen as well as by a reduced heart weight to body weight ratio when compared with WT-MI mice. This was associated with a reduction of protein levels of the intracellular TLR4 adapter protein MyD88 and enhanced protein expression of the anti-hypertrophic JNK in KO-MI mice when compared with wild-type (WT)-MI mice. In contrast, protein activation of the pro-hypertrophic kinases protein kinase Cdelta and p42/44 were not regulated in KO-MI mice when compared with WT-MI mice. Improved LV function, reduced cardiac remodeling, and suppressed intracellular TLR4 signaling in KO-MI mice were associated with significantly improved survival compared with WT-MI mice (62 vs 23%; p < 0.0001). TLR4 deficiency led to improved survival after MI mediated by attenuated left ventricular remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号