首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Chemical activation of upper cervical spinal neurons modulates activity of thoracic respiratory interneurons in rats. The aim of the present study was to examine the effects of chemical activation of C(1)-C(2) spinal neurons on thoracic spinal respiratory motor outflows. Electroneurograms of left phrenic (n = 23) and intercostal nerves (ICNs, n = 93) between T(3) and T(8) spinal segments were recorded from 36 decerebrated, vagotomized, paralyzed, and ventilated male rats. To activate upper cervical spinal neurons, glutamate pledgets (1 M, 1 min) were placed on the dorsal surface of the C(1)-C(2) spinal cord. Glutamate on C(1)-C(2) increased ICN tonic activity in 56/59 (95%) ICNs. The average maximal tonic activity of ICN was increased by 174% (n = 59). After spinal transection at rostral C(1), glutamate on C(1)-C(2) still increased ICN tonic activity in 33/35 ICNs. However, the effects of C(1)-C(2) glutamate on ICN phasic activity were highly variable, with observations of augmentation or suppression of both inspiratory and expiratory discharge. C(1)-C(2) glutamate augmented the average amplitude of phrenic burst by 20%, whereas the increases in amplitude of ICN inspiratory activity, when they occurred, averaged 120%. The burst rate of phrenic nerve discharge was decreased from 34.2 +/- 1.6 to 26.3 +/- 2.0 (mean +/- SE) breaths/min during C(1)-C(2) glutamate. These data suggested that upper cervical propriospinal neurons might play a role in descending modulation of thoracic respiratory and nonrespiratory motor activity.  相似文献   

3.
4.
5.
Spinal cord injury (SCI) has serious long-term consequences on sympathetic cardiovascular regulation. Orthostatic intolerance results from insufficient baroreflex regulation (BR) of sympathetic outflow to maintain proper blood pressure upon postural changes. Autonomic dysreflexia occurs due to insufficient inhibition of spinal sources of sympathetic activity. Both of these conditions result from the inability to control sympathetic activity caudal to SCI. It is well established that limited motor ability recovers after incomplete SCI. Therefore, the goal of this study was to determine whether recovery of BR occurs after chronic, left thoracic spinal cord hemisection at either T(3) or T(8). Baroreflex tests were performed in rats by measuring the reflex response of left (ipsilateral) renal sympathetic nerve activity to decreases and increases in arterial pressure produced by ramped infusions of sodium nitroprusside and phenylephrine, respectively. One week after a T(3) left hemisection, BR function was modestly impaired. However, 8 wk after a T(3) left hemisection, BR function was normal. One week after a T(8) left hemisection, BR function was significantly impaired, and 8 wk after a T(8) left hemisection, BR function was significantly improved. These results indicate that BR of renal sympathetic nerve activity in rats may partially recover after spinal cord hemisections, becoming normal by 8 wk after a T(3) lesion, but not after a T(8) lesion. The nature of the spinal cord and/or brain stem reorganization that mediates this recovery remains to be determined.  相似文献   

6.
The vagal amplification of phrenic nerve activity (APHR) was studied as a function of minute ventilation (VE) in 12 spontaneously breathing, anaesthetized cats. Increasing levels of VE were obtained by repeated venous administrations of 2,4-dinitrophenol. The APHR was obtained from the ratio of the phrenic nerve activities in a normal and in an occluded breath. The APHR is thought to be mediated by slowly and/or rapidly adapting stretch receptors. Because airway CO2 may inhibit the discharge of these receptors, we also investigated the influence on APHR of adding 1% and 2% by volume of CO2 to inspired gas. The results showed that an increase in VE had no influence on APHR. The values of APHR ranged from 0.95 to 1.31 and were on average 1.08. Low levels of CO2 in inspired gas did not influence APHR. Our findings suggest that the vagal amplification of central inspiratory output as determined from phrenic nerve activity has a constant gain and it seems to play a relatively unimportant role in sustaining hyperpnoeic breathing.  相似文献   

7.
Phrenic nerve activity, diaphragmatic EMG, and tracheal or pleural pressure changes were recorded in a chronic fetal sheep preparation. Three patterns of fetal phrenic nerve activity were observed: 1) a single burst; 2) irregular nonrhythmic bursts; and 3) prolonged rhythmic activity, seen only prior to fetal death. The total recording time was 54.53 h and the total duration of phrenic nerve activity was 65.34 min (2.16%). When an inactive period was defined as the absence of phrenic nerve activity for 60 s or more, active periods occupied 44.7% of the total time. Phrenic nerve activity was present in all fetuses and 97.5% of the time was coupled with diaphragmatic EMG. Both diaphragmatic EMG and intrapulmonary pressure changes occurred in the absence of phrenic nerve activity. In three fetal animals both phrenic nerves were transected. Tracheal pressure changes were seen which were not coupled with corresponding intrauterine pressure changes. Thus, changes in fetal tracheal pressure or diaphragmatic EMG do not necessarily represent the output of the fetal respiratory center. This study suggests that the fetal respiratory center is active in utero, but this activity is minimal and has a different pattern that that present after birth.  相似文献   

8.
Background aimsBone marrow stromal cells (BMSC) have been shown to provide neuroprotection after transplantation into the injured central nervous system. The present study investigated whether adult rat BMSC differentiated along a Schwann cell lineage could increase production of trophic factors and support neuronal survival and axonal regeneration after transplantation into the injured spinal cord.MethodsAfter cervical C4 hemi-section, 5-bromo-2-deoxyuridine (BrdU)/green fluorescent protein (GFP)-labeled BMSC were injected into the lateral funiculus at 1 mm rostral and caudal to the lesion site. Spinal cords were analyzed 2–13 weeks after transplantation.Results and ConclusionsTreatment of native BMSC with Schwann cell-differentiating factors significantly increased production of brain-derived neurotrophic factor in vitro. Transplanted undifferentiated and differentiated BMSC remained at the injection sites, and in the trauma zone were often associated with neurofilament-positive fibers and increased levels of vascular endothelial growth factor. BMSC promoted extensive in-growth of serotonin-positive raphaespinal axons and calcitonin gene-related peptide (CGRP)-positive dorsal root sensory axons into the trauma zone, and significantly attenuated astroglial and microglial cell reactions, but induced aberrant sprouting of CGRP-immunoreactive axons in Rexed's lamina III. Differentiated BMSC provided neuroprotection for axotomized rubrospinal neurons and increased the density of rubrospinal axons in the dorsolateral funiculus rostral to the injury site. The present results suggest that BMSC induced along the Schwann cell lineage increase expression of trophic factors and have neuroprotective and growth-promoting effects after spinal cord injury.  相似文献   

9.
10.
alpha-Difluoromethylornithine is an effective inhibitor of polyamine biosynthesis because of its specificity for ornithine decarboxylase and the fact that its attachment to this enzyme is considered to be irreversible. We have found, however, that ornithine decarboxylase inactivated with this inhibitor in intact cells, as well as purified enzyme inactivated in vitro, both are capable of releasing this inhibitor and recovering enzyme activity. This reactivation can be initiated by freezing of inactivated enzyme samples in the presence of reducing agents at -7 or -20 degrees C and can be partially induced at 37 degrees C. These results reveal an unexpected lability of this enzyme-inhibitor complex that needs to be considered in future experimental designs.  相似文献   

11.
Clinically effective modalities of treatment for spinal cord injury (SCI) still remain unsatisfactory and are largely invasive in nature. There are reports of accelerated regeneration in injured peripheral nerves by extremely low-frequency pulsed electromagnetic field (ELF-EMF) in the rat. In the present study, the effect of (50?Hz), low-intensity (17.96 μT) magnetic field (MF) exposure of rats after-hemisection of T13 spinal cord (hSCI) was investigated on sensori-motor and locomotor functions. Rats were divided into hSCI (sham-exposed) and hSCI+MF (MF: 2?h/d X 6 weeks) groups. Besides their general conditions, locomotor function by Basso, Beattie, and Brenahan (BBB) score; motor responses to noxious stimuli by threshold of tail flick (TTF), simple vocalization (TSV), tail flick latency (TFL), and neuronal excitability by H-reflex were noted. It is found that, in the hSCI+MF group, a statistically significant improvement over the hSCI control group was noted in BBB score from post-SCI wk2 and TFL and TTF by post-hSCI wk1 and wk3, respectively. Correspondingly, TSV gradually restored by post-hSCI wk5.The threshold of H-reflex was reduced on ipsilateral side vs. contralateral side in hSCI and hSCI+MF group. A complete bladder control was dramatically restored on post-hSCI day4 (vs. day7 of hSCI group) and the survival rate was 100% in the hSCI+MF group (vs. 90% of hSCI group). The results of our study suggest that extremely low-frequency (50?Hz), low-intensity (17.96 μT) MF exposure for 2?h/d x 6wks promotes recovery of sensori-motor behavior including locomotion and bladder control both in terms of temporal pattern and magnitude in hemisection injury of (T13) spinal cord rats.  相似文献   

12.
Clinically effective modalities of treatment for spinal cord injury (SCI) still remain unsatisfactory and are largely invasive in nature. There are reports of accelerated regeneration in injured peripheral nerves by extremely low-frequency pulsed electromagnetic field (ELF-EMF) in the rat. In the present study, the effect of (50 Hz), low-intensity (17.96 μT) magnetic field (MF) exposure of rats after-hemisection of T13 spinal cord (hSCI) was investigated on sensori-motor and locomotor functions. Rats were divided into hSCI (sham-exposed) and hSCI+MF (MF: 2 h/d X 6 weeks) groups. Besides their general conditions, locomotor function by Basso, Beattie, and Brenahan (BBB) score; motor responses to noxious stimuli by threshold of tail flick (TTF), simple vocalization (TSV), tail flick latency (TFL), and neuronal excitability by H-reflex were noted. It is found that, in the hSCI+MF group, a statistically significant improvement over the hSCI control group was noted in BBB score from post-SCI wk2 and TFL and TTF by post-hSCI wk1 and wk3, respectively. Correspondingly, TSV gradually restored by post-hSCI wk5.The threshold of H-reflex was reduced on ipsilateral side vs. contralateral side in hSCI and hSCI+MF group. A complete bladder control was dramatically restored on post-hSCI day4 (vs. day7 of hSCI group) and the survival rate was 100% in the hSCI+MF group (vs. 90% of hSCI group). The results of our study suggest that extremely low-frequency (50 Hz), low-intensity (17.96 μT) MF exposure for 2 h/d x 6wks promotes recovery of sensori-motor behavior including locomotion and bladder control both in terms of temporal pattern and magnitude in hemisection injury of (T13) spinal cord rats.  相似文献   

13.
14.
Episodic hypoxia elicits a long-lasting augmentation of phrenic inspiratory activity known as long-term facilitation (LTF). We investigated the respective contributions of carotid chemoafferent neuron activation and hypoxia to the expression of LTF in urethane-anesthetized, vagotomized, paralyzed, and ventilated Sprague-Dawley rats. One hour after three 5-min isocapnic hypoxic episodes [arterial Po(2) (Pa(O(2))) = 40 +/- 5 Torr], integrated phrenic burst amplitude was greater than baseline in both carotid-denervated (n = 8) and sham-operated (n = 7) rats (P < 0.05), indicating LTF. LTF was reduced in carotid-denervated rats relative to sham (P < 0.05). In this and previous studies, rats were ventilated with hyperoxic gas mixtures (inspired oxygen fraction = 0.5) under baseline conditions. To determine whether episodic hyperoxia induces LTF, phrenic activity was recorded under normoxic (Pa(O(2)) = 90-100 Torr) conditions before and after three 5-min episodes of isocapnic hypoxia (Pa(O(2)) = 40 +/- 5 Torr; n = 6) or hyperoxia (Pa(O(2)) > 470 Torr; n = 6). Phrenic burst amplitude was greater than baseline 1 h after episodic hypoxia (P < 0.05), but episodic hyperoxia had no detectable effect. These data suggest that hypoxia per se initiates LTF independently from carotid chemoafferent neuron activation, perhaps through direct central nervous system effects.  相似文献   

15.
Song G  Li Q  Shao FZ 《生理学报》2001,53(5):391-395
实验在6只成年猫上进行,将WGA-HRP微量注入C5膈神经核内,通过逆行追踪及5-HT免疫组织化学FITC荧光双重标记方法,研究了中缝核5-HT能神经元向脊髓膈神经核的投射,同时观察了延髓膈肌产运动神经元接受5-HT能纤维投射的情况,结果在中缝苍白核观察到较多的HRP-5-HT双标记神经元,在中缝大核,中缝隐核观察到少数散在的双标记神经元,在延髓疑核,孤束核腹外侧区域的HRP单核记神经元(即膈肌前运动神经元)周围观察到5-HT能轴突末梢,结构表明:发自中缝苍白核5-HT能神经元的传出纤维可投射到脊髓膈神经核,延髓膈肌前运动神经元接受5-HT能纤维的传入投射。  相似文献   

16.
Phrenic nerve activity and tracheal pressure changes were recorded in four exteriorized fetal lambs (120-135 days gestation) from lightly anesthetized ewes to study possible mechanisms involved in the establishment of rhythmical breathing patterns. Two types of spontaneous neural activity were found. The first consisted of high-frequency multiunit bursts (mean duration 820 ms; range 450-2,500 ms) that preceded a gasp. Individual units within these bursts reached peak discharge frequencies as high as 40 impulses/s. The second type of neural activity consisted of single-unit, low-frequency (1-14 impulses/s), irregular background discharges lasting up to several seconds without changes in tracheal pressure. Occasionally, higher frequency bursts of single-unit activity were detected that were also unassociated with tracheal pressure changes. The data indicate that the neural correlate of a fetal gasp includes high-frequency synchronized bursting activity in the phrenic nerve. In addition, background phrenic activity can be detected in the exteriorized fetal lamb that reflects central nervous activity in the absence of tracheal pressure changes.  相似文献   

17.
The direct impact of changes in end-tidal transpulmonary pressure (P'L) on phrenic (Phr) activity has been investigated in 6 cats anaesthetized with pentobarbital or ketamine. Rapid changes in P'L were accomplished by step-like changes in tracheal pressure (Ptr), i.e., from Ptr = -12, -6, +6 and +9 cmH2O to Ptr = 0, and reversely. Phr activity was determined 0.2 and 0.4 s after the onset of Phr activity. This analysis was carried out for a few breaths immediately preceding and following the Ptr change, and the results for Ptr = 0 were used as a reference. Oppositely directed steps in Ptr, e.g., from Ptr = 0 to Ptr = +6 and, reversely, from Ptr = +6 to Ptr = 0, caused equal but opposite changes in Phr activity. Phr activity decreased with increasing P'L, and this decrease amounted to 15% and 12% for each cmH2O increase in P'L at 0.2 and 0.4 s respectively. These results imply that changes in P'L especially affect Phr activity early in inspiration. The results also show that Phr activity in the initial phase of inspiration strongly depends on P'L. Inhibition of inspiration facilitatory neurons by slowly adapting stretch receptors may be the kernel of the underlying mechanism of our findings.  相似文献   

18.
This study was undertaken to define the mechanism for the respiratory inhibition observed during high-frequency oscillatory ventilation (HFOV). The effects of HFOV on the activities of single units in the vagus (Vna) and phrenic nerves (Pna) were examined in pentobarbital-anesthetized dogs. The animals were either ventilated by intermittent positive-pressure ventilation (IPPV) with and without positive end-expiratory pressure (PEEP), or by HFOV at a frequency of 25 Hz and pump displacement volume of 3 ml/kg. In 13 vagal units the Vna was much higher during HFOV than during IPPV or airway occlusion at a matched airway pressure. Ten units in the phrenic nerves were examined, and Pna (expressed as bursts/min) was attenuated by HFOV in all of them. In four of them, the effect of cooling the vagi to 8-10 degrees C on Pna was examined, and it was found that HFOV failed to alter the Pna. We conclude that 1) HFOV stimulates the pulmonary vagal afferent fibers continuously and to a degree greater than that due to static lung inflation and increased airway pressure and 2) the increased vagal activity during HFOV probably causes phrenic nerve activity inhibition.  相似文献   

19.
In order to study the effect of exercise on the total serum opioid activity, female rats were trained for 3 weeks on a motor-driven treadmill and the experiment was ended by a final strenuous run until exhaustion. The serum samples were taken immediately after the final run and were analyzed by radioreceptor assay. Despite considerable interindividual variations, serum opioid activity, expressed in met-enkephalin equivalents (ME eq +/- S.D.), was significantly higher in the exercising group (74.5+/-50.5 pmol ME eq/ml) than in the control group (35.7+/-20.2 pmol ME eq/ml). Because of the much lower molar levels of beta endorphin and met-enkephalin, this result suggests that many other opioid peptides might be involved in that increase.  相似文献   

20.
Respiratory afferent stimulation can elicit increases in respiratory motor output that outlast the period of stimulation by seconds to minutes [short-term potentiation (STP)]. This study examined the potential contribution of spinal mechanisms to STP in anesthetized, vagotomized, paralyzed rats. After C(1) spinal cord transection, stimulus trains (100 Hz, 5-60 s) of the C(1)-C(2) lateral funiculus elicited STP of phrenic nerve activity that peaked several seconds poststimulation. Intracellular recording revealed that individual phrenic motoneurons exhibited one of three different responses to stimulation: 1) depolarization that peaked several seconds poststimulation, 2) depolarization during stimulation and then exponential repolarization after stimulation, and 3) bistable behavior in which motoneurons depolarized to a new, relatively stable level that was maintained after stimulus termination. During the STP, excitatory postsynaptic potentials elicited by single-stimulus pulses were larger and longer. In conclusion, repetitive activation of the descending inputs to phrenic motoneurons causes a short-lasting depolarization of phrenic motoneurons, and augmentation of excitatory postsynaptic potentials, consistent with a contribution to STP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号