首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of the luminal carbonic anhydrase Cah3 associated with thylakoid membranes in the chloroplast and pyrenoid was studied in wild-type cells of Chlamydomonas reinhardtii and in its cia3 mutant deficient in the activity of the Cah3 protein. In addition, the effect of CO(2) concentration on fatty acid composition of photosynthetic membranes was examined in wild-type cells and in the cia3 mutant. In the cia3 mutant, the rate of growth was lower as compared to wild-type, especially in the cells grown at 0.03% CO(2). This might indicate a participation of thylakoid Cah3 in the CO(2)-concentrating mechanism (CCM) of chloroplast and reflect the dysfunction of the CCM in the cia3 mutant. In both strains, a decrease in the CO(2) concentration from 2% to 0.03% caused an increase in the content of polyunsaturated fatty acids in membrane lipids. At the same time, in the cia3 mutant, the increase in the majority of polyunsaturated fatty acids was less pronounced as compared to wild-type cells, whereas the amount of 16:4ω3 did not increase at all. Immunoelectron microscopy demonstrated that luminal Cah3 is mostly located in the thylakoid membranes that pass through the pyrenoid. In the cells of CCM-mutant, cia3, the Cah3 protein was much less abundant, and it was evenly distributed throughout the pyrenoid matrix. The results support our hypothesis that CO(2) might be generated from HCO(3)(-) by Cah3 in the thylakoid lumen with the following CO(2) diffusion into the pyrenoid, where the CO(2) fixing Rubisco is located. This ensures the maintenance of active photosynthesis under CO(2)-limiting conditions, and, as a result, the active growth of cells. The relationships between the induction of CCM and restructuring of the photosynthetic membranes, as well as the involvement of the Cah3 of the pyrenoid in these events, are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

2.
Localization of lumenal carbonic anhydrase Cah3 in thylakoid membranes of Chlamydomonas reinhardtii was studied using wild-type algae and photosynthetic mutants with different composition of chlorophyll-protein complexes in the photosystems. In addition, the photosynthetic characteristics of wild-type C. reinhardtii and cia3 mutants lacking the activity of carbonic anhydrase Cah3 were examined. Western blot analysis revealed the lack of cross reaction with antibodies to Cah3 in the mutant lacking the photosystem II (PSII) reaction center, in contrast to the mutant deficient in light-harvesting complex of PSII. These data show that the lumenal Cah3 is associated with polypeptides on the donor side of PSII reaction center. Using immunoelectron microscopy and antibodies to Cah3 from C. reinhardtii, we showed for the first time that the major part of thylakoid Cah3 is localized in the pyrenoid where the bulk of Rubisco is located. The rate of photosynthetic oxygen evolution and PSII photochemical efficiency were lower in C. reinhardtii cia3 mutant than in the wild type, especially in the cells grown at limiting CO2 concentrations. These observations show that Cah3 takes part in CO2-concentrating mechanism of the chloroplast. The results support our hypothesis [1, 2] that the carboxylation reaction in microalgae proceeds in the pyrenoid, a specific Rubisco-containing part of the chloroplast, which acquires CO2 from the lumen of intrapyrenoid thylakoids. We discuss significance of the pyrenoid as an autonomous metabolic microcompartment, in which Cah3 plays a key role in the production and concentration of CO2 for Rubisco. These functions may promote the photosynthetic efficiency owing to the effective CO2 supply for the Calvin cycle.  相似文献   

3.
The activity of carbonic anhydrase (CA) was studied in different cell fractions of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. The activity of this enzyme was found in the soluble and membrane protein fractions, as well as in intact cells and in a thick glycocalyx layer enclosing the cyanobacterium cells. The localization of CA in glycocalyx of M. chthonoplastes was shown by the western blot analysis and by immunoelectron microscopy studies with antibodies to the thylakoid CA from Chlamydomonas reinhardtii (Cah3). At least one of the CA forms occurring in M. chthonoplastes CA was shown to be an alpha-type enzyme. A possible mechanism of the involvement of the glycocalyx CA in calcification of cyanobacteria is discussed.  相似文献   

4.
Aquatic photosynthetic organisms live in quite variable conditions of CO(2) availability. To survive in limiting CO(2) conditions, Chlamydomonas reinhardtii and other microalgae show adaptive changes, such as induction of a CO(2)-concentrating mechanism, changes in cell organization, increased photorespiratory enzyme activity, induction of periplasmic carbonic anhydrase and specific polypeptides (mitochondrial carbonic anhydrases and putative chloroplast carrier proteins), and transient down-regulation in the synthesis of Rubisco. The signal for acclimation to limiting CO(2) in C. reinhardtii is unidentified, and it is not known how they sense a change of CO(2) level. The limiting CO(2) signals must be transduced into the changes in gene expression observed during acclimation, so mutational analyses should be helpful for investigating the signal transduction pathway for low CO(2) acclimation. Eight independently isolated mutants of C. reinhardtii that require high CO(2) for photoautotrophic growth were tested by complementation group analysis. These mutants are likely to be defective in some aspects of the acclimation to low CO(2) because they differ from wild type in their growth and in the expression patterns of five low CO(2)-inducible genes (Cah1, Mca1, Mca2, Ccp1, and Ccp2). Two of the new mutants formed a single complementation group along with the previously described mutant cia-5, which appears to be defective in the signal transduction pathway for low CO(2) acclimation. The other mutations represent six additional, independent complementation groups.  相似文献   

5.
6.
A new isoenzyme of carbonic anhydrase has been isolated and purified from Chlamydomonas reinhardtii. This carbonic anhydrase is composed of two nonidentical subunits with apparent molecular masses of 39 and 4.5 kDa and is located in the periplasmic space. This is the second periplasmic carbonic anhydrase found in C. reinhardtii. Two genes, CAH1 and CAH2, which code for carbonic anhydrase, have been recently described by Fujiwara et al. (Fujiwara, S., Fukuzawa, H., Tachiki, A., and Miyachi, S. (1990) Proc. Natl. Acad, Sci. U.S.A. 87, 9779-9783). The CAH1 gene codes for a periplasmic carbonic anhydrase which is induced under low CO2 conditions and is well characterized. The carbonic anhydrase characterized in this report was isolated from a mutant that is unable to synthesize the CAH1 gene product. Amino acid sequencing demonstrates that this newly isolated carbonic anhydrase is the CAH2 gene product. This is the first report of another functional carbonic anhydrase in C. reinhardtii.  相似文献   

7.
Intracellular carbonic anhydrase of Chlamydomonas reinhardtii.   总被引:3,自引:1,他引:2       下载免费PDF全文
An intracellular carbonic anhydrase (CA; EC 4.2.1.1) was purified to homogeneity from a mutant strain of Chlamydomonas reinhardtii (CW 92) lacking a cell wall. Intact cells were washed to remove periplasmic CA and were lysed and fractionated into soluble and membrane fractions by sedimentation. All of the CA activity sedimented with the membrane fraction and was dissociated by treatment with a buffer containing 200 mM KCI. Solubilized proteins were fractionated by ammonium sulfate precipitation, anionic exchange chromatography, and hydrophobic interaction chromatography. The resulting fraction had a specific activity of 1260 Wilbur-Anderson units/mg protein and was inhibited by acetazolamide (50% inhibition concentration, 12 nM). Final purification was accomplished by the specific absorption of the enzyme to a Centricon-10 microconcentrator filter. A single, 29.5-kD polypeptide was eluted from the filter with sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer, and a 1.5 M ammonium sulfate eluate contained CA activity. In comparison with human CA isoenzyme II, the N-terminal and internal amino acid sequences from the 29.5-kD polypeptide were 40% identical with the N-terminal region and 67% identical with an internal conserved region. Based on this evidence, we postulate that the 29.5-kD polypeptide is an internal CA in C. reinhardtii and that the enzyme is closely related to the alpha-type CAs observed in animal species.  相似文献   

8.
In an assay of carbonic anhydrase (CA), NAH14CO3 soltution at the bottom of a sealed vessel releases 14CO2, which diffuses to the top of the vessel to be assimilated by photosynthesizing Chlamydomonas reinhardtii cells that have been adapted to a low-CO2 environment. The assay is initiated by illuminating the cells and is stopped by turning the light off and killing the cells with acid. Enzyme activity was estimated from acid-stable radioactivity. With bovine CA, 1.5 Wilbur-Anderson units (WAU) was consistently measured at 5- to 6-fold above background. Sonicated whole cells of air-adapted wild-type C. reinhardtii had 740 [plus or minus] 12.4 WAU/mg chlorophyll (Chl). Sonicated chloroplasts from a mixotrophically grown wall-less strain, cw-15, had 35.5 [plus or minus] 2.6 WAU/mg Chl, whereas chloroplasts from wall-less external CA mutant strain cia5/cw-15 had 33.8 [plus or minus] 1.9 WAU/mg Chl. Sonicated chloroplasts from the wall-less mutant strain cia-3/cw-15, believed to lack an internal CA, had 2.8 [plus or minus] 3.2 WAU/mg Chl. Sonicated whole cells from cia3/cw-15 had 2.8 [plus or minus] 7.8 WAU/mg Chl. Acetazolamide, ethoxyzolamide, and p-aminomethylbenzene sulfonamide (Mafenide) at 100 [mu]M inhibited CA in sonicated chloroplasts from cia-5/cw-15. Treatment at 80[deg]C for 10 min inhibited this CA activity by 90.8 [plus or minus] 3.6%. Thus, a sensitive 14C assay has confirmed the presence of a CA in cw-15 and cia-5/cw-15 chloroplasts and the lack of a CA in cia-3/cw-15 chloroplasts. Our results indicate that HCO3- is the inorganic carbon species that is accumulated by chloroplasts of Chlamydomonas and that chloroplastic CA is responsible for the majority of internal CA activity.  相似文献   

9.

Background

Cah3 is the only carbonic anhydrase (CA) isoform located in the thylakoid lumen of Chlamydomonas reinhardtii. Previous studies demonstrated its association with the donor side of the photosystem II (PSII) where it is required for the optimal function of the water oxidizing complex. However this enzyme has also been frequently proposed to perform a critical function in inorganic carbon acquisition and CO2 fixation and all mutants lacking Cah3 exhibit very poor growth after transfer to low CO2 conditions.

Results/Conclusions

In the present work we demonstrate that after transfer to low CO2, Cah3 is phosphorylated and that phosphorylation is correlated to changes in its localization and its increase in activity. When C. reinhardtii wild-type cells were acclimated to limiting CO2 conditions, the Cah3 activity increased about 5–6 fold. Under these conditions, there were no detectable changes in the level of the Cah3 polypeptide. The increase in activity was specifically inhibited in the presence of Staurosporine, a protein kinase inhibitor, suggesting that the Cah3 protein was post-translationally regulated via phosphorylation. Immunoprecipitation and in vitro dephosphorylation experiments confirm this hypothesis. In vivo phosphorylation analysis of thylakoid polypeptides indicates that there was a 3-fold increase in the phosphorylation signal of the Cah3 polypeptide within the first two hours after transfer to low CO2 conditions. The increase in the phosphorylation signal was correlated with changes in the intracellular localization of the Cah3 protein. Under high CO2 conditions, the Cah3 protein was only associated with the donor side of PSII in the stroma thylakoids. In contrast, in cells grown at limiting CO2 the protein was partly concentrated in the thylakoids crossing the pyrenoid, which did not contain PSII and were surrounded by Rubisco molecules.

Significance

This is the first report of a CA being post-translationally regulated and describing phosphorylation events in the thylakoid lumen.  相似文献   

10.
We show for the first time that Cah3, a carbonic anhydrase associated with the photosystem II (PSII) donor side in Chlamydomonas reinhardtii, regulates the water oxidation reaction. The mutant cia3, lacking Cah3 activity, has an impaired water splitting capacity, as shown for intact cells, thylakoids and PSII particles. To compensate this impairment, the mutant overproduces PSII reaction centres (1.6 times more than wild type). We present compelling evidence that the mutant has an average of two manganese atoms per PSII reaction centre. When bicarbonate is added to mutant thylakoids or PSII particles, the O2 evolution rates exceed those of the wild type by up to 50%. The donor side of PSII in the mutant also exhibits a much higher sensitivity to overexcitation than that of the wild type. We therefore conclude that Cah3 activity is necessary to stabilize the manganese cluster and maintain the water-oxidizing complex in a functionally active state. The possibility that two manganese atoms are enough for water oxidation if bicarbonate ions are available is discussed.  相似文献   

11.
Inorganic carbon (Ci) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO2. Both air-grown cells, that have a CO2 concentrating system, and 5% CO2-grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (Ci) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO2-grown cells also accumulated some Ci, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO2 fixation by high CO2-grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO2-grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase.  相似文献   

12.
A gene (designated ecaA) encoding a vertebrate-like (alpha-type) carbonic anhydrase (CA) has been isolated from two disparate cyanobacteria, Anabaena sp. strain PCC 7120 and Synechococcus sp. strain PCC 7942. The deduced amino acid sequences correspond to proteins of 29 and 26 kDa, respectively, and revealed significant sequence similarity to human CAI and CAII, as well as Chlamydomonas CAHI, including conservation of most active-site residues identified in the animal enzymes. Structural similarities between the animal and cyanobacterial enzymes extend to the levels of antigenicity, as the Anabaena protein cross-reacts with antisera derived against chicken CAII. Expression of the cyanobacterial ecaA is regulated by CO2 concentration and is highest in cells grown at elevated levels of CO2. Immunogold localization using an antibody derived against the ecaA protein indicated an extracellular location. Preliminary analysis of Synechococcus mutants in which ecaA has been inactivated by insertion of a drug resistance cassette suggests that extracellular carbonic anhydrase plays a role in inorganic-carbon accumulation by maintaining equilibrium levels of CO2 and HCO3- in the periplasm.  相似文献   

13.
Using mass-spectrometric measurements of 18O exchange from 13C18O2 we determined the activity of carbonic anhydrase (CA; EC 4.2.1.1) in chloroplast envelope membranes isolated from Chlamydomonas reinhardtii cw-15. Our results show an enrichment of CA activity in these fractions relative to the activity in the crude chloroplast. The envelope CA activity increased about 8-fold during the acclimation to low-CO2 conditions and was completely induced within the first 4 h after the transfer to air levels of CO2. The CA-activity was not dissociated from envelope membranes after salt treatment. In addition, no cross-reactivity with other CA isoenzymes of Chlamydomonas was observed in our chloroplast envelope membranes. All these observations indicated that the protein responsible for this activity was a new CA isoenzyme, which was an integral component of the chloroplast envelopes from Chlamydomonas. The catalytic properties of the envelope CA activity were completely different from those of the thylakoid isoenzyme, showing a high requirement for Mg2+ and a high sensitivity to ethoxyzolamide. Analysis of the integral envelope proteins showed that there were no detectable differences between high- and low-inorganic carbon (Ci) cells, suggesting that the new CA activity was constitutively expressed in both high- and low-Ci cells. Two different high-Ci-requiring mutants of C. reinhardtii, cia-3 and pmp-1, had a reduced envelope CA activity. We propose that this activity could play a role in the uptake of inorganic carbon at the chloroplast envelope membranes.  相似文献   

14.
In order to broaden our understanding of the eukaryotic CO2-concentrating mechanism the occurrence and localization of a thylakoid-associated carbonic anhydrase (EC 4.2.1.1) were studied in the green algae Tetraedron minimum and Chlamydomonas noctigama. Both algae induce a CO2-concentrating mechanism when grown under limiting CO2 conditions. Using mass-spectrometric measurements of 18O exchange from doubly labelled CO2, the presence of a thylakoid-associated carbonic anhydrase was confirmed for both species. From purified thylakoid membranes, photosystem I (PSI), photosystem II (PSII) and the light-harvesting complex of the photosynthetic apparatus were isolated by mild detergent gel. The protein fractions were identified by 77 K fluorescence spectroscopy and immunological studies. A polypeptide was found to immunoreact with an antibody raised against thylakoid carbonic anhydrase (CAH3) from Chlamydomonas reinhardtii. It was found that this polypeptide was mainly associated with PSII, although a certain proportion was also connected to light harvesting complex II. This was confirmed by activity measurements of carbonic anhydrase in isolated bands extracted from the mild detergent gel. The thylakoid carbonic anhydrase isolated from T. minimum had an isoelectric point between 5.4 and 4.8. Together the results are consistent with the hypothesis that thylakoid carbonic anhydrase resides within the lumen where it is associated with the PSII complex. Received: 13 May 2000 / Accepted: 16 August 2000  相似文献   

15.
Carbonic anhydrases (CA) are zinc-containing metalloenzymes that catalyze the reversible hydration of CO2. The three evolutionarily unrelated families of CAs are designated alpha-, beta-, and gamma-CA. Aquatic photosynthetic organisms have evolved different forms of CO2 concentrating mechanisms (CCMs) to aid Rubisco in capturing CO2 from the surrounding environment. One aspect of all CCMs is the critical roles played by various specially localized extracellular and intracellular CAs. Five CAs have previously been identified in Chlamydomonas reinhardtii, a green alga with a well-studied CCM. Here we identify a sixth gene encoding a beta-type CA. This new beta-CA, designated Cah6, is distinct from the two mitochondrial beta-CAs in C. reinhardtii. Nucleotide sequence data show that the Cah6 cDNA contains an open reading frame encoding a polypeptide of 264 amino acids with a leader sequence likely targeting the protein to the chloroplast stroma. We have fused the Cah6 open reading frame to the coding sequence of maltose-binding protein in a pMal expression vector. The purified recombinant fusion protein is active and was used to partially characterize the Cah6 protein. The purified recombinant fusion protein was cleaved with protease Factor Xa to separate Cah6 from the maltose-binding protein and the purified Cah6 protein was used to raise an antibody. Western blots, immunolocalization studies, and northern blots collectively indicated that Cah6 is constitutively expressed in the stroma of chloroplasts. A possible role for Cah6 in the CCM of C. reinhardtii is proposed.  相似文献   

16.
Husic HD  Marcus CA 《Plant physiology》1994,105(1):133-139
A carbonic anhydrase (CA)-directed photoaffinity reagent, 125I-labeled p-aminomethylbenzenesulfonamide-4-azidosalicylamide,was synthesized and shown to derivatize periplasmic CA in the unicellular green alga Chlamydomonas reinhardtii. The photoderivatization of purified C. reinhardtii periplasmic CA or intact C. reinhardtii cells with the reagent resulted in the modification of the large (37 kD) subunit of the enzyme. Photoderivatization of proteins in lysed C. reinhardtii cells also resulted in the specific labeling of a polypeptide of 30 kD. Centrifugation of the cell extract prior to photoaffinity labeling revealed that the labeled peptide was present predominantly in a particulate fraction. The photoaffinity-labeled 30-kD polypeptide was not observed in extracts from a mutant of C. reinhardtii that is believed to be deficient in an intracellular form of CA. These results provide evidence that the 30-kD polypeptide, which is photoaffinity labeled in lysed C. reinhardtii cells, is an intracellular form of CA.  相似文献   

17.
Supernatant obtained after high-speed centrifugation of disrupted thylakoids that had been washed free from extrathylakoid carbonic anhydrases demonstrated carbonic anhydrase activity that was inhibited by the specific inhibitors acetazolamide and ethoxyzolamide. A distinctive feature of the effect of Triton X-100 on this activity also suggested that the source of the activity is a soluble protein. Native electrophoresis of a preparation obtained using chromatography with agarose/mafenide as an affinity sorbent revealed one protein band with carbonic anhydrase activity. The same protein was revealed in a mutant deficient in soluble stromal carbonic anhydrase β-CA1, and this indicated that the newly revealed carbonic anhydrase is not a product of the At3g01500 gene. These data imply the presence of soluble carbonic anhydrase in the thylakoid lumen of higher plants.  相似文献   

18.
The Chlamydomonas reinhardtii cia3 mutant has a phenotype indicating that it requires high-CO(2) levels for effective photosynthesis and growth. It was initially proposed that this mutant was defective in a carbonic anhydrase (CA) that was a key component of the photosynthetic CO(2)-concentrating mechanism (CCM). However, more recent identification of the genetic lesion as a defect in a lumenal CA associated with photosystem II (PSII) has raised questions about the role of this CA in either the CCM or PSII function. To resolve the role of this lumenal CA, we re-examined the physiology of the cia3 mutant. We confirmed and extended previous gas exchange analyses by using membrane-inlet mass spectrometry to monitor(16)O(2),(18)O(2), and CO(2) fluxes in vivo. The results demonstrate that PSII electron transport is not limited in the cia3 mutant at low inorganic carbon (Ci). We also measured metabolite pools sizes and showed that the RuBP pool does not fall to abnormally low levels at low Ci as might be expected by a photosynthetic electron transport or ATP generation limitation. Overall, the results demonstrate that under low Ci conditions, the mutant lacks the ability to supply Rubisco with adequate CO(2) for effective CO(2) fixation and is not limited directly by any aspect of PSII function. We conclude that the thylakoid CA is primarily required for the proper functioning of the CCM at low Ci by providing an ample supply of CO(2) for Rubisco.  相似文献   

19.
R P Funke  J L Kovar    D P Weeks 《Plant physiology》1997,114(1):237-244
Genomic complementation of the high-CO2-requiring mutant ca-1-12-1C of Chlamydomonas reinhardtii was achieved by transformation with DNA pools from an indexed cosmid library of wild-type genomic DNA. Transformation of mutant cells with cosmid DNA from two microtiter plates in the library produced colonies that grew phototrophically at atmospheric CO2 levels. Transformations with cosmid DNA from each of the rows and files of the two plates pinpointed one well in each plate with a cosmid bearing the targeted gene. Sequencing of cosmid subclones revealed a gene encoding a recently identified C. reinhardtii chloroplast carbonic anhydrase (CAH3). Transformations with chimeric constructs combining different portions of the wild-type and mutant genes indicated the presence of a mutation in the 5'-half of the gene. Comparison of mutant and wild-type gene sequences in this region revealed a G-to-A substitution in the mutant gene, which produced a nonsense codon. The data presented demonstrate that the carbonic anhydrase produced from the CAH3 gene is essential to the inorganic carbon-concentrating mechanism in C. reinhardtii and that genomic complementation can be a facile and efficient means for isolating genes associated with defects affecting photosynthesis and other physiological processes in this eukaryotic green alga.  相似文献   

20.
The localization of the 36-kD polypeptide of Chlamydomonas reinhardtii induced by photoautotrophic growth on low CO2 concentrations (0.03% in air [v/v], low CO2-grown cells) has been investigated. This polypeptide was specifically localized to the chloroplast envelope membranes isolated from low CO2-grown cells and was not present in the chloroplast envelopes isolated from high (5% CO2 in air [v/v]) CO2-grown cells. The 36-kD protein does not show carbonic anhydrase activity and was not present on the plasma membranes isolated from low CO2-grown cells. This protein may, in part, account for the different inorganic carbon uptake characteristics observed in chloroplasts isolated from high and low CO2-grown cells of C. reinhardtii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号