首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In various populations of the cultivated and weedy amaranth species, the electrophoretic patterns of alcohol dehydrogenase (ADH), glutamate dehydrogenase (GDH), malate dehydrogenase (MDH), isocitrate dehydrogenase (IDH) and malic enzyme (Me) were studied. In total, 52 populations and two varieties (Cherginskii and Valentina) have been examined. Allozyme variation of this material was low. Irrespective of species affiliation, 26 populations and two varieties were monomorphic for five enzymes; a slight polymorphism of three, two, and one enzymes was revealed in three, nine, and fourteen populations, respectively. A single amaranth locus, Adh, with two alleles, Adh F and Adh S, controls amaranth ADH. Two alleles, common Gdh S and rare Gdh F, control GDH; no heterozygotes at this locus were found. The MDH pattern has two, the fast- and slow-migrating, zones of activity (I and II, respectively). Under the given electrophoresis conditions, the fast zone is diffuse, whereas slow zone is controlled by two nonallelic genes, monomorphic Mdh 1 and polymorphic Mdh 2 that includes three alleles: Mdh 2-F, Mdh 2-N, and Mdh 2-S. Low polymorphism of IDH and Me was also found, though their genetic control remains unknown.  相似文献   

2.
Electrophoretic spectra of alcohol dehydrogenase (ADH), glutamate dehydrogenase (GDH), malate dehydrogenase (MDH), isocitrate dehydrogenase (IDH), and malic enzyme (ME) in different amaranth populations has been studied using a starch gel electrophoresis. 93 populations and 4 cultivars of amaranth have been analyzed. Some populations have been proved to be polymorphic that provided a possibility of a genetic control of the above-mentioned enzymes. The isozyme variability of the studied amaranth populations is low; all studied loci are found to be monomorphic for 73 populations and 4 cultivars. Some populations demonstrate a polymorphism in separate loci (Adh, Mdh 2, Gdh, Idh 1, Idh 2, and Mod 2). The obtained results evidence the presence of a genetic monomorphism in amaranth concerning the loci studied.  相似文献   

3.
Starch gel electrophoresis was used for isozyme analysis of ADH, GDH, MDH, IDH, and ME in populations of amaranth. Experiments were performed with 93 populations and 4 cultivars. Some populations proved to be polymorphic, and this fact allowed analysis of the genetic control of the enzymes listed. The populations examined showed poor allozyme variability. Monomorphism for all loci studied was observed in 73 populations and 4 varieties. Starch gel electrophoresis was used for isozyme analysis ofADH, GDH, MDH, IDH, and ME in populations of amaranth. Experiments were performed with 93 populations and 4 cultivars. Some populations proved to be polymorphic, and this fact allowed analysis of the genetic control of the enzymes listed. The populations examined showed poor allozyme variability. Monomorphism for all loci studied was observed in 73 populations and 4 varieties. Only some populations demonstrated rare polymorphism for a single locus each: Adh, Mdh 2, Gdh, Idh 1, Idh 2, or Mod 2. The results demonstrate genetic monomorphism of amaranth for the studied loci.  相似文献   

4.
Larionova AIa 《Genetika》2002,38(12):1641-1647
The main parameters of genetic variability have been determined in an isolated natural Scotch pine population from Chita oblast' (Tsasuchei Forest) by analysis of 19 genes coding for nine enzymes: GDH, IDH, LAP, PGM, AAT, ADH, MDH, 6-PGD, and DIA. Polymorphic genes constituted 63.2% of all structural genes studied in the population at the 99% polymorphism criterion. The mean number of alleles per locus was 1.63. The observed and expected heterozygosities were 0.237 and 0.251, respectively. These estimates are close to the corresponding mean values for Scotch pine according to the data on 18 or more structural genes.  相似文献   

5.
The main parameters of genetic variability have been determined in an isolated natural Scotch pine population from Chita oblast (Tsasuchei Forest) by analysis of 19 genes coding for nine enzymes: GDH, IDH, LAP, PGM, AAT, ADH, MDH, 6-PGD, and DIA. Polymorphic genes constituted 63.2% of all structural genes studied in the population at the 99% polymorphism criterion. The mean number of alleles per locus was 1.63. The observed and expected heterozygosities were 0.237 and 0.251, respectively. These estimates are close to the corresponding mean values for Scotch pine according to the data on 18 or more structural genes.  相似文献   

6.
In laboratory cultures of Drosophila melanogaster derived from an African population, the quantities of six out of seven enzymes (G6PD, IDH, GPDH, ME, MDH, PGM and ADH) were higher in Adh-FF homozygotes than they were in Adh-SS. In crosses between Adh-FF and Adh-SS flies, the differences segregated as co-dominant alleles of a single Mendelian gene closely linked, or identical, to the Adh locus. The generality of these associations was suggested by the study of a French population with a very different history and genetic background. The possibility that the associations were caused by artefacts of the immunodiffusion techniques, or to a linked inversion (In(2L)t), was excluded. Possible ways by which the Adh locus may affect the quantities of other enzymes are discussed.  相似文献   

7.
Electrophoretic spectra of GOT, GDH, DIA, MDH, SOD, FDH, ADH, ACP, IDH enzymes in the megagametophytes of seeds of 69 mountain pine (Pinus mugo Turra) trees from natural populations of the Ukrainian Carpathian mountains have been described. 19 loci products had efficient electrophoretic separation. The analysis of alleles segregation of the heterozygous trees on the whole confirms monogenic inheritance of the discovered variants.  相似文献   

8.
The level of polymorphism was investigated in four Drosophila species: D. hydei, D. immigrans, D. funebris and D. busckii with respect to four enzyme loci. Populations were collected in the Northern and Eastern parts of Hungary. The allozymes were separated by polyacrylamide gel electrophoresis. In D. hydei populations the Adh locus was mostly monomorphic; αGpdh and αAmy were poorly and Mdh highly polymorphic. D. immigrans and D. funebris were monomorphic in Mdh. D. busckii was polymorphic at three loci (Adh, Odh and Mdh), however, at the αGpdh and αAmy it was found to be monomorphic.  相似文献   

9.
The expression of the enzyme-coding genes, controlling glucose-phosphate isomerase (GPI), malate dehydrogenase (MDH), and alcohol dehydrogenase (ADH), was examined in nongerminating seeds of sugarbeet after Triton X-100 (TX-100) and colchicine treatment. Two types of changes revealed included modification of the enzymatic loci expression (change of the isozyme electrophoretic mobility) and inactivation of standard profiles. In the MDH and GPI systems, these processes were found to be associated. Complete isozyme modification was accompanied with the disappearance of standard profiles. In the ADH system, the treatment with TX-100 and colchicine gave rise to two independent processes, including silencing of the Adh1 locus and the appearance of the ADH isozymes with abnormal electrophoretic mobility, which were probably the products of the Adh2 locus. It was suggested that the effect of TX-100 and colchicine on the expression of the enzyme-encoding genes examined depended on the intracellular localization of the encoded enzymes.  相似文献   

10.
Summary Thirteen enzymes (MDH, SDH, LAP, PGM, PX, IDH, GPI, 6PGD, APH, GOT, GDH, ME and SOD) of 3 cultivated beet (B. vulgaris L.) gene pools, comprising 12 accessions of fodder beet, 11 of old multigerm sugar beet and 10 of modern monogerm sugar beet, were investigated using horizontal starch gel electrophoresis. Eleven accessions of primitive or wild B. vulgaris were also included for the comparison of isozymes. Variation in isozyme phenotypes was investigated to detect diversity in the three cultivated forms of beet. Phenotypic variation was observed in all except ME and SOD, which were monomorphic. A high degree of phenotypic polymorphism (Pj) was found in GDH, PGM, IDH, APH and MDH. Differences in phenotypic polymorphism in MDH, GPI and PX were recognized between fodder beet and both sugar beet groups. Average polymorphism for 13 enzymes in both sugar beets was significantly higher than that in fodder beet. For 13 enzymes, the existence of high isozyme diversity in both sugar beet gene pools was revealed. Allele frequencies in 13 alleles of five enzyme-coding loci, Lap, Px-1, Aph-1, Got-2 and Gdh-2, were investigated. New alleles, Px-1 1 and Got-2 1, were found in fodder beet accessions. No significant differences of average allele frequencies of five loci between fodder beet and both sugar beets were recognized. Several unique alleles and different isozyme phenotypes were observed in the accessions of B. vulgaris ssp. macrocarpa and ssp. adanensis. Future utilization of cultivated beet gene pools for sugar beet breeding is discussed from the viewpoint of genetic resources.  相似文献   

11.
The expression of the enzyme-coding genes, controlling glucose-phosphate isomerase (GPI), malate dehydrogenase (MDH), and alcohol dehydrogenase (ADH), was examined in nongerminating seeds of sugarbeet after Triton X-100 (TX-100) and colchicine treatment. Two types of changes revealed included modification of the enzymatic loci expression (change of the isozyme electrophoretic mobility) and inactivation of standard profiles. In the MDH and GPI systems, these processes were found to be associated. Complete isozyme modification was accompanied with the disappearance of standard profiles. In the ADH system, the treatment with TX-100 and colchicine gave rise to two independent processes, including silencing of the Adh1 locus and the appearance of the ADH isozymes with abnormal electrophoretic mobility, which were probably the products of the Adh2 locus. It was suggested that the effect of TX-100 and colchicine on the expression of the enzyme-encoding genes examined depended on the intracellular localization of the encoded enzymes.  相似文献   

12.
Genetic control of malate dehydrogenase isozymes in maize   总被引:2,自引:0,他引:2       下载免费PDF全文
Goodman MM  Stuber CW  Lee CN  Johnson FM 《Genetics》1980,94(1):153-168
At least six nuclear loci are responsible for the genetic control of malate dehydrogenase (L-malate: NAD oxidoreductase; EC 1.1.1.37; MDH) in coleoptiles of maize. Three independently segregating loci (Mdh1, Mdh2, Mdh3) govern the production of MDH isozymes resistant to inactivation by ascorbic acid and found largely or solely in the mitochondria. A rare recessive allele found at a fourth nuclear locus (mmm) causes increased electrophoretic mobility of the MDH isozymes governed by the Mdh1, Mdh2 and Mdh3 loci.—Two loci (Mdh4, Mdh5) govern MDH isozymes that are selectively inactivated by homogenization in an ascorbic acid solution and that appear to be nonmitochondrial (soluble). Mdh4 and Mdh5 segregate independently of each other and independently of Mdh1, Mdh2 and Mdh3. However, there is close linkage between the migration modifier and Mdh4.——Multiple alleles have been found for all of the Mdh loci except the migration modifier, and electrophoretically "null" or near "null" alleles (as expressed in standardized sections of maize coleoptile) have been found for all loci except Mdh4. Duplicate inheritance commonly occurs for Mdh1 and Mdh2 and also for Mdh4 and Mdh5.——Inter- and intragenic heterodimers are formed between sub-units specified by the three loci governing the mitochondrial MDH isozymes. The same is true of the alleles and nonalleles at the two loci governing the soluble variants. No such heterodimers are formed by interactions between mitochondrial and soluble MDH isozymes.  相似文献   

13.
The gene products of the two major alleles of alcohol dehydrogenase (ADH-F and ADH-S) have been subjected to kinetic and biochemical analyses over a range of temperatures. Although temperature was found to have a significant effect on both kinetic and biochemical properties of Drosophila ADH, no significant differential effect was observed between the major ADH allozymes. The results are discussed within the context of the selective maintenance of Adh polymorphism in natural populations.  相似文献   

14.
Four replicate populations of Drosophila melanogaster, two reared on medium supplemented with ethanol and two reared on standard medium, were electrophoretically monitored for 28 generations. During the first 12 generations, allelic, genotypic and gametic frequencies were determined for eight polymorphic enzymes: GOT, alpha-GPDH, MDH, ADH, TO, E6, Ec and ODH. Samples from generation 18 and 28 were electrophoretically typed for ADH and alpha-GPDH. In addition, samples from generation 27 were analyzed for the presence of inversion heterozygotes. The experimental results showed rapid gene-frequency divergence between control and treatment populations at the Adh locus in a direction consistent with the activity hierarchy of Adh genotypes. Gene-frequency divergence between control and treatment populations also occurred at the alpha-Gpdh locus, although the agreement among replicates appeared to have broken down by generation 28. No differential gene-frequency change occurred at any of the six remaining marker loci. Furthermore, values of linkage disequilibria among all linked pairs of genes were initially small and remained small throughout the course of the experiment. Taking these facts into account, it is argued that the gene-frequency response observed at ADH is most probably caused by selection at the Adh locus. The gene frequency response at alpha-Gpdh can also be be accounted for in terms of the effect of ethanol on energy metabolism, although other explanations cannot be excluded.  相似文献   

15.
云南松居群遗传学研究的等位酶分析方法   总被引:2,自引:0,他引:2  
针对15个云南松Pinusyunnanensis居群,开展了14种酶系统的水平切片淀粉凝胶电泳实验,在谱带遗传分析的基础上确定了33个等位酶位点及其等位基因。其中有32个等位酶位点是多态的(有2个以上的等位基因),只有一个单态位点Dia-4。有3个等位基因的位点有Lap-1、Lap-2、Aa-3、Skd-1、Skd-2、Adh-1、Adh-3、Gdh、Pgd-1、Pgm-1、Pgm-3、Pgi-1、Pgi-3、Mdh-1、Me、G6pd、Dia-1、Tpi-1、Tpi-2、Tpi-3和Tpi-4,有4个等位基因的位点有Skd-3、Adh-2、Pgd-2、Mdh-2、Mdh-3、Mdh-4和Dia-2,有5个等位基因的位点有Aat-1和Dia-3。云南松居群的等位基因平均数A=21,在松属中居于中上水平。本研究揭示了云南松居群酶位点及其等位基因带谱的变异式样,为松属植物的遗传多样性研究提供了一批酶位点及其等位基因的参考图谱  相似文献   

16.
A biochemical genetic study of the enzyme malate dehydrogenase (MDH) was conducted in the grasshopperOxya j. japonica. Analysis of MDH electrophoretic variation in this species of grasshopper shows that one of the two autosomal loci for MDH in grasshoppers, the Mdh-2 locus, controlling the anodal set of MDH isozymes, is duplicated. Results of breeding studies confirm this and the observed polymorphism at theMdh-2 locus in the two populations ofOxya j. japonica studied can be attributed to three forms of linked alleles at the duplicated locus in equilibrium in both populations. In this respect, all individuals of this species possess heterozygous allelic combinations at the duplicatedMdh-2 locus, which may account for the spread of the duplicated locus in the populations of this species of grasshopper.This research was supported by a grant (Vote F) from the University of Malaya, Kuala Lumpur.  相似文献   

17.
Three chlorophyll-deficient mutants (CD-1, CD-2, and CD-3), derived from the progeny of independent germinal revertants from the w4-mutable soybean line [Glycine max (L.) Merrill], were characterized genetically. Electrophoretic analyses indicated that these lines lacked two of three mitochondrial malate dehydrogenase isozymes (MDH-). The absence of two MDH bands was conditioned by a recessive allele at a locus designated Mdh1. All three CDs were allelic to each other and to T253, a Harosoy isoline y20-k2 MDH- from the Genetic Type Collection. The MDH- phenotype and the yellow-green plant phenotype were each inherited as single recessive alleles. No recombination between the two traits was found in nine F2 populations from crosses of the CDs by wild-type soybean lines. Complete linkage of the Mdh1 and y20 loci suggested that the mutations in the chlorophyll-deficient lines were deletions. Phenotypic differences among the CDs suggested that the deletions may have different endpoints. The chromosomal aberrations were not large enough to affect transmission of y20 and Mdh1 mutant alleles through the pollen or ovule. CD-1, CD-2, and CD-3 were added to the Soybean Genetic Type Collection as T323, T324, and T325, respectively.  相似文献   

18.
The biochemical genetic structure and variation among local population of Glycine soja Sieb. & Zucc. were investigated based on isozyme analysis using the techniques of polyacrylamide gel electrophoresis. The isoenzyme zymography of 6 enzymes viz malate dehydrogenase (MDH), peroxidase (PER), adenosine triphosphatase (ATPase), amylase (AMY), esterase (EST) and isocitric dehydrogenase (IDH) of 14 culture seedlings were respectively compared. Isozymatic analysis revealed high genetic variation in the population of G. soja. MDH, PER, ATPase, AMY are polymorphic. ATPase has the highest polymorphic index (PI=O. 1582). EST and IDH are monomorphic for all populations. The average population heterozygosity (He) was 0. 3141, and the average genetic distance (Da) among the 14 samples is 0. 1512. Cluster analysis and canonical analysis showed no correlation existed between the population's biochemical genetic structure and its environment. It was concluded that mutation could be the major cause of the high enzymatic polymorphism in population; and the mechanism that keeps the polymorphism could be random drift sampling strategy for conservation of crop genetic resources was also put forward.  相似文献   

19.
CO2/盐冲击对小麦幼苗呼吸酶活性的影响   总被引:8,自引:0,他引:8  
以不同抗盐小麦 (Triticum aestivum L.)为材料 ,研究了 CO2 /盐冲击对幼苗生长状况、叶绿素含量、光呼吸和三羧酸循环 (TCAC)关键酶活性的影响。结果表明 :Na Cl抑制小麦生长 ,而 CO2 促进生长 ,这种效应盐处理植株比非盐处理植株明显 ;Na Cl降低叶绿素含量 ,CO2 可使其轻微提高 ;盐对普通小麦TCAC中的异柠檬酸脱氢酶 (IDH)、琥珀酸脱氢酶 (SDH)、苹果酸脱氢酶 (MDH)和光呼吸中的乙醇酸氧化酶 (GO)、羟基丙酮酸还原酶 (HPR)有刺激作用 ,CO2 则抑制它们的活性。抗盐小麦对 CO2 /盐冲击的反应与普通小麦有差别。结果可以说明 ,CO2 能够减轻 Na Cl对植物的毒害效应  相似文献   

20.
The alcohol dehydrogenase (ADH) variant ADH-FCh.D. has a secondary alcohol/primary alcohol activity ratio characteristic of ADH-S although it has an electrophoretic mobility inseparable from ADH-F. ADH-FCh.D. is distinguished from these two common ADH variants by being much more thermostable. Genetic analysis suggests tht ADH-FCh.D. is specified by an allele at the Adh locus. Biochemical comparisons show that ADH-FCh.D. has the same electrophoretic mobility, activity ratio and thermostability as the two other heat-resistant variants which have been reported, ADH-F71K in Europe and ADH-Fr in North America. The geographically widespread distribution of a thermostable ADH variant within the ADH-F electrophoretic class indicates that it should be considered in attempts to explain the Adh polymorphism in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号