首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In homology search, good spaced seeds have higher sensitivity for the same cost (weight). However, elucidating the mechanism that confers power to spaced seeds and characterizing optimal spaced seeds still remain unsolved. This paper investigates these two important open questions by formally analyzing the average number of non-overlapping hits and the hit probability of a spaced seed in the Bernoulli sequence model. We prove that when the length of a non-uniformly spaced seed is bounded above by an exponential function of the seed weight, the seed outperforms strictly the traditional consecutive seed of the same weight in both 1) the average number of non-overlapping hits and 2) the asymptotic hit probability. This clearly answers the first problem mentioned above in the Bernoulli sequence model. The theoretical study in this paper also gives a new solution to finding long optimal seeds.  相似文献   

2.
MOTIVATION: Homology search finds similar segments between two biological sequences, such as DNA or protein sequences. The introduction of optimal spaced seeds in PatternHunter has increased both the sensitivity and the speed of homology search, and it has been adopted by many alignment programs such as BLAST. With the further improvement provided by multiple spaced seeds in PatternHunterII, Smith-Waterman sensitivity is approached at BLASTn speed. However, computing optimal multiple spaced seeds was proved to be NP-hard and current heuristic algorithms are all very slow (exponential). RESULTS: We give a simple algorithm which computes good multiple seeds in polynomial time. Due to a completely different approach, the difference with respect to the previous methods is dramatic. The multiple spaced seed of PatternHunterII, with 16 weight 11 seeds, was computed in 12 days. It takes us 17 s to find a better one. Our approach changes the way of looking at multiple spaced seeds.  相似文献   

3.
It has been observed that in homology search gapped seeds have better sensitivity than ungapped ones for the same cost (weight). In this paper, we propose a probability leakage model (a dissipative Markov system) to elucidate the mechanism that confers power to spaced seeds. Based on this model, we identify desirable features of gapped search seeds and formulate an extremely efficient procedure for seed design: it samples from the set of spaced seed exhibiting those features, evaluates their sensitivity, and then selects the best. The sensitivity of the constructed seeds is negligibly less than that of the corresponding known optimal seeds. While the challenging mathematical question of characterizing optimal search seeds remains open, we believe that our eminently efficient and effective approach represents a satisfactory solution from a practitioner's viewpoint.  相似文献   

4.
Sequence similarity search is a fundamental way of analyzing nucleotide sequences. Despite decades of research, this is not a solved problem because there exist many similarities that are not found by current methods. Search methods are typically based on a seed-and-extend approach, which has many variants (e.g. spaced seeds, transition seeds), and it remains unclear how to optimize this approach. This study designs and tests seeding methods for inter-mammal and inter-insect genome comparison. By considering substitution patterns of real genomes, we design sets of multiple complementary transition seeds, which have better performance (sensitivity per run time) than previous seeding strategies. Often the best seed patterns have more transition positions than those used previously. We also point out that recent computer memory sizes (e.g. 60 GB) make it feasible to use multiple (e.g. eight) seeds for whole mammal genomes. Interestingly, the most sensitive settings achieve diminishing returns for human–dog and melanogaster–pseudoobscura comparisons, but not for human–mouse, which suggests that we still miss many human–mouse alignments. Our optimized heuristics find ∼20 000 new human–mouse alignments that are missing from the standard UCSC alignments. We tabulate seed patterns and parameters that work well so they can be used in future research.  相似文献   

5.
Optimal spaced seeds were developed as a method to increase sensitivity of local alignment programs similar to BLASTN. Such seeds have been used before in the program PatternHunter, and have given improved sensitivity and running time relative to BLASTN in genome-genome comparison. We study the problem of computing optimal spaced seeds for detecting homologous coding regions in unannotated genomic sequences. By using well-chosen seeds, we are able to improve the sensitivity of coding sequence alignment over that of TBLASTX, while keeping runtime comparable to BLASTN. We identify good seeds by first giving effective hidden Markov models of conservation in alignments of homologous coding regions. We give an efficient algorithm to compute the optimal spaced seed when conservation patterns are generated by these models. Our results offer the hope of improved gene finding due to fewer missed exons in DNA/DNA comparison, and more effective homology search in general, and may have applications outside of bioinformatics.  相似文献   

6.
We propose a general approach to compute the seed sensitivity, that can be applied to different definitions of seeds. It treats separately three components of the seed sensitivity problem--a set of target alignments, an associated probability distribution, and a seed model--that are specified by distinct finite automata. The approach is then applied to a new concept of subset seeds for which we propose an efficient automaton construction. Experimental results confirm that sensitive subset seeds can be efficiently designed using our approach, and can then be used in similarity search producing better results than ordinary spaced seeds.  相似文献   

7.
MOTIVATION: Filtration is an important technique used to speed up local alignment as exemplified in the BLAST programs. Recently, Ma et al. discovered that better filtering can be achieved by spacing out the matching positions according to a certain pattern, instead of contiguous positions to trigger a local alignment in their PatternHunter program. Such a match pattern is called a spaced seed. RESULTS: Our numerical computation shows that the ranks of spaced seeds (based on sensitivity) change with the sequences similarity. Since homologous sequences may have diverse similarity, we assess the sensitivity of spaced seeds over a range of similarity levels and present a list of good spaced seeds for facilitating homology search in DNA genomic sequences. We validate that the listed spaced seeds are indeed more sensitive using three arbitrarily chosen pairs of DNA genomic sequences.  相似文献   

8.
We are interested in detecting homologous genomic DNA sequences with the goal of locating approximate inverted, interspersed, and tandem repeats. Standard search techniques start by detecting small matching parts, called seeds, between a query sequence and database sequences. Contiguous seed models have existed for many years. Recently, spaced seeds were shown to be more sensitive than contiguous seeds without increasing the random hit rate. To determine the superiority of one seed model over another, a model of homologous sequence alignment must be chosen. Previous studies evaluating spaced and contiguous seeds have assumed that matches and mismatches occur within these alignments, but not insertions and deletions (indels). This is perhaps appropriate when searching for protein coding sequences (<5% of the human genome), but is inappropriate when looking for repeats in the majority of genomic sequence where indels are common. In this paper, we assume a model of homologous sequence alignment which includes indels and we describe a new seed model, called indel seeds, which explicitly allows indels. We present a waiting time formula for computing the sensitivity of an indel seed and show that indel seeds significantly outperform contiguous and spaced seeds when homologies include indels. We discuss the practical aspect of using indel seeds and finally we present results from a search for inverted repeats in the dog genome using both indel and spaced seeds.  相似文献   

9.

Background

Patterns with wildcards in specified positions, namely spaced seeds, are increasingly used instead of k-mers in many bioinformatics applications that require indexing, querying and rapid similarity search, as they can provide better sensitivity. Many of these applications require to compute the hashing of each position in the input sequences with respect to the given spaced seed, or to multiple spaced seeds. While the hashing of k-mers can be rapidly computed by exploiting the large overlap between consecutive k-mers, spaced seeds hashing is usually computed from scratch for each position in the input sequence, thus resulting in slower processing.

Results

The method proposed in this paper, fast spaced-seed hashing (FSH), exploits the similarity of the hash values of spaced seeds computed at adjacent positions in the input sequence. In our experiments we compute the hash for each positions of metagenomics reads from several datasets, with respect to different spaced seeds. We also propose a generalized version of the algorithm for the simultaneous computation of multiple spaced seeds hashing. In the experiments, our algorithm can compute the hashing values of spaced seeds with a speedup, with respect to the traditional approach, between 1.6\(\times\) to 5.3\(\times\), depending on the structure of the spaced seed.

Conclusions

Spaced seed hashing is a routine task for several bioinformatics application. FSH allows to perform this task efficiently and raise the question of whether other hashing can be exploited to further improve the speed up. This has the potential of major impact in the field, making spaced seed applications not only accurate, but also faster and more efficient.

Availability

The software FSH is freely available for academic use at: https://bitbucket.org/samu661/fsh/overview.
  相似文献   

10.
Hu XS 《Heredity》2005,94(3):338-346
The 'spatial' pattern of the correlation of pairwise relatedness among loci within a chromosome is an important aspect for an insight into genomic evolution in natural populations. In this article, a statistical genetic method is presented for estimating the correlation of pairwise relatedness among linked loci. The probabilities of identity-in-state (IIS) are related to the probabilities of identity-by-descent (IBS) for the two- and three-loci cases. By decomposing the joint probabilities of two- or three-loci IBD, the probability of pairwise relatedness at a single locus and its correlation among linked loci can be simultaneously estimated. To provide effective statistical methods for estimation, weighted least square (LS) and maximum likelihood (ML) methods are evaluated through extensive Monte Carlo simulations. Results show that the ML method gives a better performance than the weighted LS method with haploid genotypic data. However, there are no significant differences between the two methods when two- or three-loci diploid genotypic data are employed. Compared with the optimal size for haploid genotypic data, a smaller optimal sample size is predicted with diploid genotypic data.  相似文献   

11.
Multiple sequence alignment is a classical and challenging task. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state-of-the-art works suffer from the "once a gap, always a gap" phenomenon. Is there a radically new way to do multiple sequence alignment? In this paper, we introduce a novel and orthogonal multiple sequence alignment method, using both multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole and tries to build the alignment vertically, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds have proved significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks, showing that MANGO compares favorably, in both accuracy and speed, against state-of-the-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, ProbConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0, and Kalign 2.0. We have further demonstrated the scalability of MANGO on very large datasets of repeat elements. MANGO can be downloaded at http://www.bioinfo.org.cn/mango/ and is free for academic usage.  相似文献   

12.
MOTIVATION: Periodic patterns in time series resulting from biological experiments are of great interest. The commonly used Fast Fourier Transform (FFT) algorithm is applicable only when data are evenly spaced and when no values are missing, which is not always the case in high-throughput measurements. The choice of statistic to evaluate the significance of the periodic patterns for unevenly spaced gene expression time series has not been well substantiated. METHODS: The Lomb-Scargle periodogram approach is used to search time series of gene expression to quantify the periodic behavior of every gene represented on the DNA array. The Lomb-Scargle periodogram analysis provides a direct method to treat missing values and unevenly spaced time points. We propose the combination of a Lomb-Scargle test statistic for periodicity and a multiple hypothesis testing procedure with controlled false discovery rate to detect significant periodic gene expression patterns. RESULTS: We analyzed the Plasmodium falciparum gene expression dataset. In the Quality Control Dataset of 5080 expression patterns, we found 4112 periodic probes. In addition, we identified 243 probes with periodic expression in the Complete Dataset, which could not be examined in the original study by the FFT analysis due to an excessive number of missing values. While most periodic genes had a period of 48 h, some had a period close to 24 h. Our approach should be applicable for detection and quantification of periodic patterns in any unevenly spaced gene expression time-series data.  相似文献   

13.
We apply the concept of subset seeds proposed in [1] to similarity search in protein sequences. The main question studied is the design of efficient seed alphabets to construct seeds with optimal sensitivity/selectivity trade-offs. We propose several different design methods and use them to construct several alphabets. We then perform a comparative analysis of seeds built over those alphabets and compare them with the standard Blastp seeding method [2], [3], as well as with the family of vector seeds proposed in [4]. While the formalism of subset seeds is less expressive (but less costly to implement) than the cumulative principle used in Blastp and vector seeds, our seeds show a similar or even better performance than Blastp on Bernoulli models of proteins compatible with the common BLOSUM62 matrix. Finally, we perform a large-scale benchmarking of our seeds against several main databases of protein alignments. Here again, the results show a comparable or better performance of our seeds versus Blastp.  相似文献   

14.
Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses.  相似文献   

15.
啮齿类取食的物种偏好与时空格局   总被引:1,自引:1,他引:1  
沈泽昊  唐圆圆  李道兴 《生态学报》2008,28(12):6018-6024
通过强烈消耗土壤种子库,动物取食种子对植物种群更新和群落动态产生深远的影响。一般认为种子被食概率的空间格局取决于种子密度和离母树的距离,而环境(如地形)异质性的影响则一直没有得到足够的关注,与此相关的机制及其影响程度亦不清楚。研究设计在野外埋放种子以模拟种子扩散后的情形,监测啮齿类对种子的取食,以检验种子取食受埋藏生境、时间及动物对种子种类的偏好等因素的影响。结果表明,经过1a实验,8种落叶阔叶树种子的累计取食概率为0~48.25%,平均值为20%;山顶部位的取食概率大致是其它部位概率的3倍;埋放在凋落物层中的种子被食概率大约为埋放在土壤层中概率的2倍。利用logistic回归模型进行统计分析表明,种子被食概率变化的45%可以被上述因素解释。其中,物种偏好是影响种子被取食概率的首要因素,其后依次是地形、埋藏时间和深度。啮齿类明显喜好较大的种子;其取食行为在山脊部位明显较其它部位更频繁和剧烈;对埋藏种子的取食从3月份开始加剧,到7月份以后平息下来。种子埋放深度对啮齿类的取食概率有显著影响。  相似文献   

16.
Efficient methods for multiple sequence alignment with guaranteed error bounds   总被引:11,自引:0,他引:11  
Multiple string (sequence) alignment is a difficult and important problem in computational biology, where it is central in two related tasks: finding highly conserved subregions or embedded patterns of a set of biological sequences (strings of DNA, RNA or amino acids), and inferring the evolutionary history of a set of taxa from their associated biological sequences. Several precise measures have been proposed for evaluating the goodness of a multiple alignment, but no efficient methods are known which compute the optimal alignment for any of these measures in any but small cases. In this paper, we consider two previously proposed measures, and given two computationaly efficient multiple alignment methods (one for each measure) whose deviation from the optimal value isguaranteed to be less than a factor of two. This is the novel feature of these methods, but the methods have additional virtues as well. For both methods, the guaranteed bounds are much smaller than two when the number of strings is small (1.33 for three strings of any length); for one of the methods we give a related randomized method which is much faster and which gives, with high probability, multiple alignments with fairly small error bounds; and for the other measure, the method given yields a non-obviouslower bound on the value of the optimal alignment.  相似文献   

17.
A large number of biclustering methods have been proposed to detect patterns in gene expression data. All these methods try to find some type of biclusters but no one can discover all the types of patterns in the data. Furthermore, researchers have to design new algorithms in order to find new types of biclusters/patterns that interest biologists. In this paper, we propose a novel approach for biclustering that, in general, can be used to discover all computable patterns in gene expression data. The method is based on the theory of Kolmogorov complexity. More precisely, we use Kolmogorov complexity to measure the randomness of submatrices as the merit of biclusters because randomness naturally consists in a lack of regularity, which is a common property of all types of patterns. On the basis of algorithmic probability measure, we develop a Markov Chain Monte Carlo algorithm to search for biclusters. Our method can also be easily extended to solve the problems of conventional clustering and checkerboard type biclustering. The preliminary experiments on simulated as well as real data show that our approach is very versatile and promising.  相似文献   

18.
Using a four-taxon example under a simple model of evolution, we show that the methods of maximum likelihood and maximum posterior probability (which is a Bayesian method of inference) may not arrive at the same optimal tree topology. Some patterns that are separately uninformative under the maximum likelihood method are separately informative under the Bayesian method. We also show that this difference has impact on the bootstrap frequencies and the posterior probabilities of topologies, which therefore are not necessarily approximately equal. Efron et al. (Proc. Natl. Acad. Sci. USA 93:13429-13434, 1996) stated that bootstrap frequencies can, under certain circumstances, be interpreted as posterior probabilities. This is true only if one includes a non-informative prior distribution of the possible data patterns, and most often the prior distributions are instead specified in terms of topology and branch lengths. [Bayesian inference; maximum likelihood method; Phylogeny; support.].  相似文献   

19.
SUMMARY: To annotate newly sequenced organisms, cross-species sequence comparison algorithms can be applied to align gene sequences to the genome of a related species. To improve the accuracy of alignment, spaced seeds must be optimized for each comparison. As the number and diversity of genomes increase, an efficient alternative is to cluster pairwise comparisons into groups and identify seeds for groups instead of individual comparisons. Here we investigate a measure of comparison closeness and identify classes of comparisons that show similar seed behavior and therefore can employ the same seed. AVAILABILITY: Source code is freely available at http://dna.cs.gwu.edu and from Bioinformatics online.  相似文献   

20.
The challenge of similarity search in massive DNA sequence databases has inspired major changes in BLAST-style alignment tools, which accelerate search by inspecting only pairs of sequences sharing a common short "seed," or pattern of matching residues. Some of these changes raise the possibility of improving search performance by probing sequence pairs with several distinct seeds, any one of which is sufficient for a seed match. However, designing a set of seeds to maximize their combined sensitivity to biologically meaningful sequence alignments is computationally difficult, even given recent advances in designing single seeds. This work describes algorithmic improvements to seed design that address the problem of designing a set of n seeds to be used simultaneously. We give a new local search method to optimize the sensitivity of seed sets. The method relies on efficient incremental computation of the probability that an alignment contains a match to a seed pi, given that it has already failed to match any of the seeds in a set Pi. We demonstrate experimentally that multi-seed designs, even with relatively few seeds, can be significantly more sensitive than even optimized single-seed designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号