首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutral peptidases in the stroma of pea chloroplasts   总被引:5,自引:9,他引:5       下载免费PDF全文
One endopeptidase (EP1) and at least three aminopeptidases (AP1, AP2, and AP3) were discovered in the stroma of chloroplasts isolated from pea seedlings (Pisum sativum L.), and purified over 100-fold. EP1 requires added Mg2+ or Ca2+ for activity, may have an additional tightly bound metal atom, and is inhibited by sulfhydryl reagents but not by serine residue-directed inhibitors. It is reversibly inhibited by dithiothreitol. Its specificity is for the bond between two adjacent Ala or Gly residues. Its molecular mass is 93 kilodaltons, estimated on a gel filtration column. Aminopeptidase activities were detected with the aid of different amino acyl-β-naphthylamides as substrates. They were resolved into at least three individual proteins by gel filtration and DEAE-cellulose chromatography, having apparent molecular masses of 269,000 (AP1), 84,000 (AP2), and 42,000 (AP3) daltons, respectively. Each has a unique specificity for substrates, with AP1 hydrolyzing only the Prolyl-β-naphthylamide. None of the APs require added divalent cations for activity, but the possibility of a tightly bound metal function was suggested in AP2 and AP3 (not AP1) from effects of inhibitors. A probable sulfhydryl residue function was indicated for all three, from inhibition by p-hydroxymercuribenzoate and Zn2+. All these peptidases had pH optima at 7.7.  相似文献   

2.
The distribution of the early light-inducible protein (ELIP) of pea (Pisum sativum) between grana and stroma thylakoids was studied. An antibody raised against a bacterial-expressed fusion protein containing ELIP sequences was used. Illumination of dark-grown pea seedlings causes an accumulation of the ELIP in the thylakoid membranes with a maximum level at 16 h. During continuous illumination exceeding 16 h the level decreases again. The fractionation of thylakoid membranes of 48-h-illuminated pea seedlings in grana and stroma thylakoids reveals that there is no uniform distribution of ELIP in the thylakoids. Rather 60-70% of ELIP was found in the stroma thylakoids and 30-40% in the grana thylakoids. This distribution is in accordance with that of photosystem I but not with that of photosystem II. After Triton-X-100 solubilization almost all ELIP is found in the photosystem-I-containing fraction. This also supports an association of ELIP with photosystem I.  相似文献   

3.
Translation of psbA mRNA in Chlamydomonas reinhardtii chloroplasts is regulated by a redox signal(s). RB60 is a member of a protein complex that binds with high affinity to the 5'-untranslated region of psbA mRNA. RB60 has been suggested to act as a redox-sensor subunit of the protein complex regulating translation of chloroplast psbA mRNA. Surprisingly, cloning of RB60 identified high homology to the endoplasmic reticulum-localized protein disulfide isomerase, including an endoplasmic reticulum-retention signal at its carboxyl terminus. Here we show, by in vitro import studies, that the recombinant RB60 is imported into isolated chloroplasts of C. reinhardtii and pea in a transit peptide-dependent manner. Subfractionation of C. reinhardtii chloroplasts revealed that the native RB60 is partitioned between the stroma and the thylakoids. The nature of association of native RB60, and imported recombinant RB60, with thylakoids is similar and suggests that RB60 is tightly bound to thylakoids. The targeting characteristics of RB60 and the potential implications of the association of RB60 with thylakoids are discussed.  相似文献   

4.
Chloroplasts contain thylakoid-bound and free ribosomes and polysomes. Whether binding of polysomes plays an immediate role in the regulation of chloroplast protein synthesis is not yet clear. In the present work, variations of protein synthesis and of mRNA content were measured not in greening, but in fully differentiated chloroplasts during the cell cycle of synchronized cultures of Chlamydomonas reinhardii. At different times of the vegetative cell cycle, the RNA was extracted from free and thylakoid-bound chloroplast polysomes and the partition of mRNAs between stroma and thylakoids was measured for two proteins, i.e. the 32-kDa herbicide-binding membrane protein and the soluble large subunit of the ribulose-1,5-bisphosphate carboxylase. At the same time the rates of synthesis of these two proteins were also determined. At 2 h after the onset of light, the content of both mRNAs in chloroplasts had doubled and 75-90% of each of these mRNAs were found to be bound to the thylakoids. The rate of protein synthesis, however, increased 10-fold, but reached its maximum only after about 6 h in the light. The differences in the time courses, in the stimulation of the rate of protein synthesis, and in the mRNA-binding to thylakoids point to a translational regulation of protein synthesis. Furthermore, since a very high proportion of polysomes were bound to thylakoids, containing mRNA for both a membrane and a soluble protein, this light-induced binding of polysomes to thylakoids seems to be an essential, but not the only, prerequisite for protein synthesis in chloroplasts.  相似文献   

5.
6.
1. Turnover of the photosynthetic carbon reduction cycle has been demon-strated in chlorophyll-free reaction mixtures containing chloroplast stromal extract, as evidenced by the fixation of CO2 following addition of small amounts of 3-phosphoglycerate.2. The activity of the photosynthetic carbon reduction cycle in this system is inhibited by inorganic phosphate (Pi), with activity reduced to 50% by about 6.5 mM Pi. Pi also increased the lag period which elapsed before a steady rate of CO2 fixation was obtained.3. The effect of Pi on the rate of 3-phosphoglycerate reduction following the addition of substrate amounts of some cycle intermediates was investigated. Substantial inhibition was observed with fructose 1,6-bisphosphate, sedoheptulose 1,7-bisphosphate and erythrose 4-phosphate as substrates. Pi also affected the activity of ribulose-bisphosphate carboxylase, with stimulation at Pi concentrations below 2.5 mM and inhibition at higher concentrations.4. The results showed that the sedoheptulose bisphosphatase reaction is inhibited more strongly by Pi than the fructose bisphosphatase reaction.5. It is concluded that the previously established inhibitory effects of Pi on photosynthesis by intact isolated chloroplasts may be partly due to these inhibitory effects of Pi on the reactions of the photosynthetic carbon reduction cycle.  相似文献   

7.
Photosynthesis Research - Plant growth and photosynthetic activity are usually inhibited due to the overall action of Cd on a whole organism, though few cadmium cations can invade chloroplasts in...  相似文献   

8.
9.
Jin SH  Hong J  Li XQ  Jiang DA 《Annals of botany》2006,97(5):739-744
BACKGROUND AND AIMS: Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (RCA) is a nuclear-encoded chloroplast protein that modifies the conformation of Rubisco, releases inhibitors from active sites, and increases enzymatic activity. It appears to have other functions, e.g. in gibberellin signalling and as a molecular chaperone, which are related to its distribution within the chloroplast. The aim of this research was to resolve uncertainty about the localization of RCA, and to determine whether the distributions of Rubisco and RCA were altered when RCA content was reduced. The monocotyledon, Oryza sativa was used as a model species. METHODS: Gas exchange and Rubisco were measured, and the sub-cellular locations of Rubisco and RCA were determined using immunogold-labelling electron microscopy, in wild-type and antisense rca rice plants. KEY RESULTS: In antisense rca plants, net photosynthetic rate and the initial Rubisco activity decreased much less than RCA content. Immunocytolocalization showed that Rubisco in wild-type and antisense plants was localized in the stroma of chloroplasts. However, the amount of Rubisco in the antisense rca plants was greater than in the wild-type plants. RCA was detected in both the chloroplast stroma and in the thylakoid membranes of wild-type plants. The percentage of RCA labelling in the thylakoid membrane was shown to be substantially decreased, while the fraction in the stroma was increased, by the antisense rca treatment. CONCLUSIONS: From the changes in RCA distribution and alterations in Rubisco activity, RCA in the stroma of the chloroplast probably contributes to the activation of Rubisco, and RCA in thylakoids compensates for the reduction of RCA in the stroma, allowing steady-state photosynthesis to be maintained when RCA is depleted. RCA may also have a second role in protecting membranes against environmental stresses as a chaperone.  相似文献   

10.
Niemi KJ  Adler J  Selman BR 《Plant physiology》1990,93(3):1235-1240
The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with [3H-methyl]-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. One is a polypeptide with a molecular mass of 64 kD, a second has an Mr of 48 kD, and the third has a molecular mass of less than 10 kD. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide, having a molecular mass of 24 kD, is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methyl-linkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile [3H]methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the [3H]methyl group.  相似文献   

11.
Proteins newly formed from labeled amino acids by isolated intact pea chloroplasts are not entirely stable. Between 20 and 35% of the labeled protein is degraded over a 20–30 min incubation period in pulse-chase experiments. Protein degration is prevented when chloroplast ATP level drops, as in the dark without added ATP. Degration is stimulated by adding ATP directly or by generating it in photophosphorylation. Susceptible new proteins are not stabilized against further additions of ATP, during incubation under ATP-deficient conditions.  相似文献   

12.
Mechanisms of protein import into thylakoids of chloroplasts   总被引:1,自引:0,他引:1  
The thylakoid membrane of chloroplasts contains the major photosynthetic complexes, which consist of several either nuclear or chloroplast encoded subunits. The biogenesis of these thylakoid membrane complexes requires coordinated transport and subsequent assembly of the subunits into functional complexes. Nuclear-encoded thylakoid proteins are first imported into the chloroplast and then directed to the thylakoid using different sorting mechanisms. The cpSec pathway and the cpTat pathway are mainly involved in the transport of lumenal proteins, whereas the spontaneous pathway and the cpSRP pathway are used for the insertion of integral membrane proteins into the thylakoid membrane. While cpSec-, cpTat- and cpSRP-mediated targeting can be classified as 'assisted' mechanisms involving numerous components, 'unassisted' spontaneous insertion does not require additional targeting factors. However, even the assisted pathways differ fundamentally with respect to stromal targeting factors, the composition of the translocase and energy requirements.  相似文献   

13.
Stimulation of the bicarbonate dehydration reaction in thylakoid suspension under conditions of saturating light at pH 7.6-8.0 was discovered. This effect was inhibited by nigericin or the lipophilic carbonic anhydrase (CA) inhibitor ethoxyzolamide (EZ), but not by the hydrophilic CA inhibitor, acetazolamide. It was shown that the action of EZ is not caused by an uncoupling effect. It was concluded that thylakoid CA is the enzyme utilizing the light-generated proton gradient across the thylakoid membrane thus facilitating the production of CO(2) from HCO(3)(-) and that this enzyme is covered from the stroma side of thylakoids by a lipid barrier.  相似文献   

14.
Absorption maximum positions of three LW Chl forms in pea chloroplasts were estimated using 77 K excitation spectra of fluorescence detected in their maxima (720, 732 and 746 nm). The 705, 714 and 723 nm components were revealed in the second derivative plots of the excitation spectra. The same maxima were found in normalized excitation spectra obtained with dividing excitation spectra by absorption spectrum. It was confirmed that the observed maxima belong to absorption of LW fluorescing Chl forms. The same maxima were displayed in an action spectrum of P700 oxidation measured at room temperature. It confirms the energy transfer from LW Chl forms to P700. Close to 50% efficiency of bulk Chl forms in both excitation of LW fluorescence and P700 oxidation was found. Analysis of the shape of normalized excitation spectra suggests that there is no energy exchange among LW Chl forms. Their location and physiological role are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
N. J. Kruger  T. ap Rees 《Planta》1983,158(2):179-184
The aim of this work was to investigate the origin of maltose formed during starch breakdown in the dark by chloroplasts of Pisum sativum. The maximum catalytic activities of maltose phosphorylase and maltase in pea leaves were shown to be low, relative to those of enzymes known to be involved in starch breakdown. Fractionation of pea leaves indicated that the chloroplasts lack maltase but have enough maltose phosphorylase to synthesize the amounts of maltose formed when isolated chloroplasts breakdown starch. The absence of exogenous phosphate markedly reduced starch breakdown and maltose accumulation by isolated chloroplasts. When [14C]glucose was supplied to chloroplasts that were breaking down starch in the dark, maltose was labelled and most of the label was in the glucose moeity. It is suggested that maltose phosphorylase, using glucose-1-phosphate formed from starch by α-glucan phosphorylase, is responsible for, at least some of, the synthesis of maltose during starch breakdown by pea chloroplasts in vitro.  相似文献   

16.
Hydrogen-peroxide-scavenging systems within pea chloroplasts   总被引:8,自引:0,他引:8  
D. J. Gillham  A. D. Dodge 《Planta》1986,167(2):246-251
The subcellular distribution of ascorbate peroxidase and glutathione reductase (EC 1.6.4.2) in pea leaves was compared with that of organelle markers. Enzyme distribution was found to be similar to that of the chloroplast enzyme NADPH-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). Isolated chloroplasts showed a close correlation between intactness and the percentage of enzyme activity recovered. Chloroplasts of 85% intactness were found to contain a high proportion of leaf dehydroascorbate reductase activity (EC 1.8.5.1), 10% of leaf glutathione and 30% of leaf ascorbate. These results are discussed in relation to the potential role of chloroplast antioxidant systems in plant resistance to environmental and other stress conditions.Abbreviations GSH reduced glutathione - GSSG oxidized glutathione - NADPH-GPD glyceraldehyde-3-phosphate dehydrogenase - SOD superoxide dismutase  相似文献   

17.
18.
Oxygen uptake in isolated pea thylakoids in the presence of an inhibitor of plastoquinol oxidation by b 6/f-complex dinitrophenylether of 2-iodo-4-nitrothymol (DNP-INT) was studied. The rate of oxygen uptake in the absence of DNP-INT had a distinct maximum at pH 5.0 followed by a decline to pH 6.5 and posterior slow rise, while in the presence of an inhibitor it increased at an increasing pH from 4.5 to 6.5 and then kept close to the rate in its absence up to pH 8.5. Gramicidin D substantially affected the oxygen uptake rate in the absence of DNP-INT, and only slightly in its presence. Such differences pointed to the presence of special oxygen reduction site(s) in photosynthetic electron transport chain `before' cytochrome complex. Oxygen uptake in membrane fragments of Photosystem II (BBY-particles) was low and did not depend on pH. This did not support the participation of QB in oxygen reduction in DNP-INT-treated thylakoids. Oxygen uptake in thylakoids in the presence of DNP-INT was inhibited by DCMU as well as by catalase in whole pH range. The catalase effect indicated that oxygen uptake was the result of dioxygen reduction by electrons derived from water, and that H2O2 was a final product of this reduction. Photoreduction of Cyt c in the presence of DNP-INT was partly inhibited by superoxide dismutase (SOD), and this pointed to superoxide formation. The latter was confirmed by a rise of the oxygen uptake rate in the presence of ascorbate and by suppression of this rise by SOD. Both tests showed that the detectable superoxide radicals averaged 20–25% of potentially formed superoxide radicals the quantity of which was calculated from the oxygen uptake rate. The obtained data implies that the oxygen reduction takes place in a plastoquinone pool and occurs mainly inside the membrane, where superoxide can be consumed in concomitant reactions. A scheme for oxygen reduction in a plastoquinone pool in thylakoid membranes is proposed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Endogenous dephosphorylation of the light-harvesting chlorophyll-protein complex of photosystem II in pea (Pisum sativum, L. cv Progress 9) thylakoids drives the state 2 to state 1 transition; the responsible enzyme is a thylakoid-bound, fluoride-sensitive phosphatase with a pH optimum of 8.0 (Bennett J [1980] Eur J Biochem 104: 85-89). An enzyme with these characteristics was isolated from well-washed thylakoids. Its molecular mass was estimated at 51.5 kD, and this monomer was catalytically active, although the activity was labile. The active site could be labeled with orthophosphate at pH 5.0. High levels of alkaline phosphatase activity were obtained with the assay substrate, 4-methylumbelliferyl phosphate (350 micromoles per minute per milligram purified enzyme). The isolated enzyme functioned as a phosphoprotein phosphatase toward phosphorylated histone III-S and phosphorylated, photosystem II-enriched particles from pea, with typical activities in the range of 200 to 600 picomoles per minute per milligram enzyme. These activities all had a pH optimum of 8.0 and were fluoride sensitive. The enzyme required magnesium ion for maximal activity but was not dependent on this ion. Evidence supporting a putative function for this phosphatase in dephosphorylation of thylakoid proteins came from the inhibition of this process by a polyclonal antibody preparation raised against the partially purified enzyme.  相似文献   

20.
The surface density of stacked and total thylakoid membranes in chloroplasts was determined morphometrically using the method of vertical sections. The degree of stacking, defined as the fraction of the total membrane area which is involved in stacking, was calculated from the surface densities and found to be 0.70 for chloroplasts of lettuce grown under field conditions. An average membrane area of 500 microns 2 for the thylakoids in a chloroplast was obtained from the surface density and the average volume of the chloroplasts (11.6 microns 3, estimated by means of equivalent oblate spheroids). The advantage of the morphometric method over alternative techniques and the relevance of the results with respect to the topology of thylakoid membranes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号