首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Here we show that plasma kallikrein (PKal) mediates a plasminogen (Plg) cascade in adipocyte differentiation. Ecotin, an inhibitor of serine proteases, inhibits cell-shape change, adipocyte-specific gene expression, and lipid accumulation during adipogenesis in culture. Deficiency of Plg, but not of urokinase or tissue-type plasminogen activator, suppresses adipogenesis during differentiation of 3T3-L1 cells and mammary-gland involution. PKal, which is inhibited by ecotin, is required for adipose conversion, Plg activation and 3T3-L1 differentiation. Human plasma lacking PKal does not support differentiation of 3T3-L1 cells. PKal is therefore a physiological regulator that acts in the Plg cascade during adipogenesis. We propose that the Plg cascade fosters adipocyte differentiation by degradation of the fibronectin-rich preadipocyte stromal matrix.  相似文献   

2.
A crystal structure of the serine protease, mouse glandular kallikrein 13 (mGK-13) has been determined at 2.6-A resolution. This enzyme, isolated from the mouse submandibular gland, is also known as prorenin-converting enzyme and cleaves submandibular gland Ren-2 prorenin to yield active renin. The mGK-13 structure is similar to other members of the mammalian serine protease family, having five conserved disulfide bonds and an active site located in the cleft between two beta-barrel domains. The mGK-13 structure reveals for the first time an ordered kallikrein loop conformation containing a short 3(10) helix. This loop is disordered in the related porcine pancreatic kallikrein and rat submandibular tonin structures. The kallikrein loop is in close spatial proximity to the active site and is also involved in a dimeric arrangement of mGK-13. The catalytic specificity of mGK-13 for Ren-2 prorenin was studied by modeling a prorenin-derived peptide into the active site of mGK-13. This model emphasizes two electronegative substrate specificity pockets on the mGK-13 surface, which could accommodate the dibasic P2 and P1 residues at the site of prorenin cleavage by mGK-13.  相似文献   

3.
Increased levels of both the cysteine protease, cathepsin L, and the serine protease, uPA (urokinase-type plasminogen activator), are present in solid tumors and are correlated with malignancy. uPA is released by tumor cells as an inactive single-chain proenzyme (pro-uPA) which has to be activated by proteolytic cleavage. We analyzed in detail the action of the cysteine protease, cathepsin L, on recombinant human pro-uPA. Enzymatic assays, SDS-PAGE and Western blot analysis revealed that cathepsin L is a potent activator of pro-uPA. As determined by N-terminal amino acid sequence analysis, activation of pro-uPA by cathepsin L is achieved by cleavage of the Lys158-Ile159 peptide bond, a common activation site of serine proteases such as plasmin and kallikrein. Similar to cathepsin B (Kobayashi et al., J. Biol. Chem. (1991) 266, 5147-5152) cleavage of pro-uPA by cathepsin L was most effective at acidic pH (molar ratio of cathepsin L to pro-uPA of 1:2,000). Nevertheless, even at pH 7.0, pro-uPA was activated by cathepsin L, although a 10-fold higher concentration of cathepsin L was required. As tumor cells may produce both pro-uPA and cathepsin L, implications for the activation of tumor cell-derived pro-uPA by cathepsin L may be considered. Different pathways of activation of pro-uPA in tumor tissues may coexist: (i) autocatalytic intrinsic activation of pro-uPA; (ii) activation by serine proteases (plasmin, kallikrein, Factor XIIa); and (iii) activation by cysteine proteases (cathepsin B and L).  相似文献   

4.
Phosphorylation is a potent mechanism regulating the activity of many intracellular enzymes. We have discovered that the product of the human urokinase plasminogen activator gene, pro-uPA, is phosphorylated in serine in at least two human cell lines. Phosphorylation occurs within the cell during biosynthesis, and phosphorylated intracellular pro-uPA is secreted into the medium. Of the secreted pro-uPA molecules, 20-50% are phosphorylated in serine, thus representing a meaningful fraction of the total biosynthetic pro-uPA. Although the sites of phosphorylation have not yet been determined, at least two such sites must exist; in fact plasmin cleavage of phosphorylated single chain pro-uPA yields a two chain uPA in which both chains are phosphorylated. A specific function for pro-uPA phosphorylation has not yet been identified; however, it is tempting to speculate that, as in many other cases, phosphorylation may affect the activity of the enzyme, its response to inhibitors or the conversion of pro-uPA zymogen to active two-chain uPA. This would represent an additional way of regulating extracellular proteolysis, an important pathway involved in both intra- and extravascular phenomena like fibrinolysis, cell migration and invasiveness.  相似文献   

5.
6.
The plasminogen (Plg) activation cascade on the cell surface plays a central role in cell migration and is involved in a plethora of physiological and pathological processes. Its regulation is coordinated by many receptors, in particular the urokinase-type plasminogen activator receptor (uPAR, CD87), receptors that physically interact and functionally cooperate with uPAR, and Plg binding molecules. Here we studied the impact of one of the Plg binding molecules, the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P-IGF2R, CD222), on cellular Plg activation. By developing both in vitro and in vivo Plg activation assays on size-fractionated lysates of M6P-IGF2R-silenced cells, we identified Plg-associated complexes with M6P-IGF2R as the regulatory factor. Using lipid raft preserving versus dissolving detergents, we found lipid dependence of the Plg regulatory function of these complexes. Furthermore, M6P-IGF2R-silencing in uPAR-positive human cell lines reduced internalization of Plg, resulting in elevated Plg activation. In contrast, the expression of human M6P-IGF2R in mouse embryonic fibroblasts derived from M6P-IGF2R knock-out mice enhanced Plg internalization. Finally, peptide 18-36 derived from the Plg-binding site within M6P-IGF2R enhanced Plg uptake. Thus, by targeting Plg to endocytic pathways, M6P-IGF2R appears to control Plg activation within cells that might be important to restrict plasmin activity to specific sites and substrates.  相似文献   

7.
Urokinase-type plasminogen activator (uPA) degrades the extracellular matrix and plays critical roles in tumor invasion and metastasis. Matriptase, a membrane-bound serine protease, was shown to activate uPA in a uPA receptor-free, solution-based study. We now investigate whether matriptase affects activation of receptor-bound uPA and contributes to the invasiveness of HRA human ovarian cancer cells in vitro and tumor behavior in nude mice. Here we show the following. 1) uPA expression was effectively stimulated by TGF-beta1 in HRA cells. 2) Antisense (AS)-matriptase transfection achieved a marked inhibition of receptor-bound pro-uPA activation without altering expression of uPA and uPA receptor mRNA and proteins, irrespective of whether cells were stimulated with TGF-beta1. 3) Tumor cell receptor-bound pro-uPA could be efficiently cleaved by matriptase to generate enzymatically active two-chain uPA. Thus, matriptase can substitute for plasmin in the proteolytic activation of pro-uPA to enzymatically active uPA. 4) The AS-matriptase-treated cells had a decreased ability to invade an extracellular matrix layer, as compared with control cells. 5) When the AS-matriptase-treated cells were injected intraperitoneally into nude mice, the mice developed smaller tumors. Our data identify a novel role for matriptase for activation of receptor-bound uPA.  相似文献   

8.
Hepsin, a type II transmembrane serine protease, is strongly up-regulated in prostate cancer. Hepsin overexpression in a mouse prostate cancer model resulted in tumor progression and metastasis, associated with basement membrane disorganization. We investigated whether hepsin enzymatic activity was linked to the basement membrane defects by examining its ability to initiate the plasminogen/plasmin proteolytic pathway. Because plasminogen is not processed by hepsin, we investigated the upstream activators, urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator. Enzymatic assays with a recombinant soluble form of hepsin demonstrated that hepsin did not cleave pro-tissue-type plasminogen activator but efficiently converted pro-uPA into high molecular weight uPA by cleavage at the Lys158-Ile159 (P1-P1') peptide bond. uPA generated by hepsin displayed enzymatic activity toward small synthetic and macromolecular substrates indistinguishable from uPA produced by plasmin. The catalytic efficiency of pro-uPA activation by hepsin (kcat/Km 4.8 x 10(5) m(-1) s(-1)) was similar to that of plasmin, which is considered the most potent pro-uPA activator and was about 6-fold higher than that of matriptase. Conversion of pro-uPA was also demonstrated with cell surface-expressed full-length hepsin. A stable hepsinoverexpressing LnCaP cell line converted pro-uPA into high molecular weight uPA at a rate of 6.6 +/- 1.9 nm uPA h(-1), which was about 3-fold higher than LnCaP cells expressing lower hepsin levels on their surface. In conclusion, the ability of hepsin to efficiently activate pro-uPA suggests that it may initiate plasmin-mediated proteolytic pathways at the tumor/stroma interface that lead to basement membrane disruption and tumor progression.  相似文献   

9.
A cytocidal factor against mouse thymocytes was purified from the submandibular glands of female BALB/c mice using Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. SDS-PAGE and amino acid sequence analysis revealed that the cytocidal factor was mouse glandular kallikrein (mGK)-6. mGK-6 showed an optimal enzyme activity at pH 10 and a cytocidal activity against thymocytes in a dose-dependent manner.  相似文献   

10.
The formation of stable complexes between serpins and their target serine proteinases indicates formation of an ester bond between the proteinase active-site serine and the serpin P1 residue [Egelund, R., Rodenburg, K.W., Andreasen, P.A., Rasmussen, M.S., Guldberg, R.E. & Petersen, T.E. (1998) Biochemistry 37, 6375-6379]. An important question concerning serpin inhibition is the contrast between the stability of the ester bond in the complex and the rapid hydrolysis of the acyl-enzyme intermediate in general serine proteinase-catalysed peptide bond hydrolysis. To answer this question, we used limited proteolysis to detect conformational differences between free urokinase-type plasminogen activator (uPA) and uPA in complex with plasminogen activator inhibitor-1 (PAI-1). Whereas the catalytic domain of free uPA, pro-uPA, uPA in complex with non-serpin inhibitors and anhydro-uPA in a non-covalent complex with PAI-1 was resistant to proteolysis, the catalytic domain of PAI-1-complexed uPA was susceptible to proteolysis. The cleavage sites for four different proteinases were localized in specific areas of the C-terminal beta-barrel of the catalytic domain of uPA, providing evidence that the serpin inhibitory mechanism involves a serpin-induced massive rearrangement of the proteinase active site, including the specificity pocket, the oxyanion hole, and main-chain binding area, rendering the proteinase unable to complete the normal hydrolysis of the acyl-enzyme intermediate. The distorted region includes the so-called activation domain, also known to change conformation on zymogen activation.  相似文献   

11.
Hematopoietic stem cells within the bone marrow exist in a quiescent state. They can differentiate and proliferate in response to hematopoietic stress (e.g., myelosuppression), thereby ensuring a well-regulated supply of mature and immature hematopoietic cells within the circulation. However, little is known about how this stress response is coordinated. Here, we show that plasminogen (Plg), a classical fibrinolytic factor, is a key player in controlling this stress response. Deletion of Plg in mice prevented hematopoietic stem cells from entering the cell cycle and undergoing multilineage differentiation after myelosuppression, leading to the death of the mice. Activation of Plg by administration of tissue-type plasminogen activator promoted matrix metalloproteinase-mediated release of Kit ligand from stromal cells, thereby promoting hematopoietic progenitor cell proliferation and differentiation. Thus, activation of the fibrinolytic cascade is a critical step in regulating the hematopoietic stress response.  相似文献   

12.
Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice than in Plg-deficient mice. Skin wounds in uPA;tPA-deficient mice treated with the broad-spectrum matrix metalloproteinase (MMP) inhibitor galardin (N-[(2R)-2-(hydroxamido-carbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide) eventually heal, whereas skin wounds in galardin-treated Plg-deficient mice do not heal. Furthermore, plasmin is biochemically detectable in wound extracts from uPA;tPA double-deficient mice. In vivo administration of a plasma kallikrein (pKal)-selective form of the serine protease inhibitor ecotin exacerbates the healing impairment of uPA;tPA double-deficient wounds to a degree indistinguishable from that observed in Plg-deficient mice, and completely blocks the activity of pKal, but not uPA and tPA in wound extracts. These findings demonstrate that an additional plasminogen activator provides sufficient plasmin activity to sustain the healing process albeit at decreased speed in the absence of uPA, tPA and galardin-sensitive MMPs and suggest that pKal plays a role in plasmin generation.  相似文献   

13.
Urokinase-type plasminogen activator expression is induced in the mouse mammary gland during development and post-lactational involution. We now show that primiparous plasminogen-deficient (Plg(-/-)) mice have seriously compromised mammary gland development and involution. All mammary glands were underdeveloped and one-quarter of the mice failed to lactate. Although the glands from lactating Plg(-/-) mice were initially smaller, they failed to involute after weaning, and in most cases they failed to support a second litter. Alveolar regression was markedly reduced and a fibrotic stroma accumulated in Plg(-/-) mice. Nevertheless, urokinase and matrix metalloproteinases (MMPs) were upregulated normally in involuting glands of Plg(-/-) mice, and fibrin did not accumulate in the glands. Heterozygous Plg(+/-) mice exhibited haploinsufficiency, with a definite, but less severe mammary phenotype. These data demonstrate a critical, dose-dependent requirement for Plg in lactational differentiation and mammary gland remodeling during involution.  相似文献   

14.
A system has been developed for the expression in E. coli of 12 of the 14 expressed mouse submandibular gland kallikreins as cassettes subcloned directly from cDNA. Using the epidermal growth factor binding protein (mGK-9) and the gamma-subunit of nerve growth factor (mGK-3), as test cases, mature processed forms, obtained as functionally active proteins, as well as various precursor forms, were isolated. The expression system described allows rapid isolation of kallikrein protein from corresponding cDNA with yields of approximately 1.0 mg of purified protein from 10 g of initial cell paste. This expression system will facilitate structure/function studies of the mouse glandular kallikrein gene family and help elucidate the regions of the mature proteins responsible for the diverse catalytic behavior and growth factor interactions observed in this family of proteins.  相似文献   

15.
Mouse nerve growth factor (NGF) is cleaved at a histidine-methionine bond to release an NH2-terminal octapeptide (NGF1-8). The enzyme responsible, beta-NGF-endopeptidase, is structurally and functionally similar to gamma-NGF and epidermal growth factor-binding protein (EGF-BP) and cleaves mouse low molecular weight kininogen to produce bradykinin-like activity. These data have suggested that, like gamma-NGF and EGF-BP, beta-NGF-endopeptidase is a mouse glandular kallikrein. Evidence for a physiological role for NGF1-8 encouraged studies to further characterize the structure and function of this enzyme. Purified beta-NGF-endopeptidase migrated as a single band on isoelectric focusing and reducing SDS-polyacrylamide gels. As was expected, it removed NGF1-8 from NGF. Interestingly, enzymatic activity on an artificial substrate, and on NGF, was inhibited by NGF1-8 and by bradykinin. These studies further supported the view that beta-NGF-endopeptidase acts on both NGF and kininogen. The first 30 NH2-terminal amino acids of beta-NGF-endopeptidase were sequenced. This analysis demonstrated that the enzyme is encoded by the gene designated mGK-22 (Evans et al., 1987). The sequence of this gene corresponds to that of EGF-BP type A (Anundi et al., 1982; Drinkwater et al., 1987), and so studies were performed to determine whether or not beta-NGF-endopeptidase participates in EGF complex formation. Chromatographic and kinetic data gave no evidence that beta-NGF-endopeptidase is an EGF-binding protein. Our studies suggest that contamination of high molecular weight (HMW) EGF preparations with beta-NGF-endopeptidase erroneously led to earlier designation of the product of mGK-22 as an EGF-BP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Action of purified human cathepsin B on recombinant single-chain urokinase-type plasminogen activator (pro-uPA) generated enzymatically active two-chain uPA (HMW-uPA), which was indistinguishable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot from plasmin-generated HMW-uPA and from elastase- or thrombin-generated inactive two-chain urokinase-type plasminogen activator. Preincubation of cathepsin B with E-64 (transepoxysuccinyl-L-leucylamino- (4-guanidino)butane, a potent inhibitor for cathepsin B) prior to the addition of pro-uPA prevented the activation of pro-uPA. The cleavage site within the cathepsin B-treated urokinase-type plasminogen activator (uPA) molecule, determined by N-terminal amino acid sequence analysis, is located between Lys158 and Ile159. Pro-uPA is cleaved by cathepsin B at the same peptide bond that is cleaved by plasmin or kallikrein. Binding of cathepsin B-activated pro-uPA to the uPA receptor on U937 cells did not differ from that of enzymatically inactive pro-uPA, indicating an intact receptor-binding region within the growth factor-like domain of the cathepsin B-treated uPA molecule. Not only soluble but also tumor cell receptor-bound pro-uPA could be efficiently cleaved by cathepsin B to generate enzymatically active two-chain uPA. Thus, cathepsin B can substitute for plasmin in the proteolytic activation of pro-uPA to enzymatically active HMW-uPA. In contrast, no significant activation of pro-uPA by cathepsin D was observed. As tumor cells may produce both pro-uPA and cathepsin B, implications for the activation of tumor cell-derived pro-uPA by cellular proteases may be considered.  相似文献   

17.
Mouse kallikrein 24 is thought to encode a functional serine protease belonging to the mouse glandular kallikrein gene family. Preliminary results suggest that this kallikrein may play a role in testis function in adult mice. In order to obtain insights into its physiological functions, we undertook molecular and biochemical analyses of this enzyme. We cloned a cDNA for kallikrein 24 from the adult mouse testis cDNA library. Kallikrein 24 was expressed in the kidney, submandibular glands, ovary, epididymis, and testis of the mouse. In the testis, kallikrein 24 mRNA was detectable at 4 weeks of postnatal development, and became more prominent thereafter. The kallikrein 24 gene was expressed exclusively in the Leydig cells of adult mice. When Leydig cells isolated from a 2-week-old mouse testis were cultured in the presence of testosterone, kallikrein 24 expression was induced. Active recombinant enzyme showed trypsin-like specificity, favorably cleaving Arg-X bonds of synthetic peptide substrates. The enzymatic activity was strongly inhibited by typical serine protease inhibitors. Mouse kallikrein 24 degraded casein, gelatin, fibronectin and laminin. These results suggest that the enzyme may play a role in the degradation of extracellular matrix proteins in the interstitial area surrounding the Leydig cells of the adult mouse testis. The present findings should contribute to future physiological studies of this mouse testis protease.  相似文献   

18.
Evidence has accumulated that invasion and metastasis in solid tumors require the action of tumor-associated proteases, which promote the dissolution of the surrounding tumor matrix and the basement membranes. Receptor-bound urokinase-type plasminogen activator (uPA) appears to play a key role in these events. uPA converts plasminogen into plasmin and thus mediates pericellular proteolysis during cell migration and tissue remodeling under physiological and pathophysiological conditions. uPA is secreted as an enzymatically inactive proenzyme (pro-uPA) by tumor cells and stroma cells. uPA exerts its proteolytic function on normal cells and tumor cells as an ectoenzyme after having bound to a high-affinity cell surface receptor. After binding, pro-uPA is activated by serine proteases (e.g. plasmin, trypsin or plasma kallikrein) and by the cysteine proteases cathepsin B or L, resp. Receptor-bound enzymatically active uPA converts plasminogen to plasmin which is bound to a different low-affinity receptor on tumor cells. Plasmin then degrades components of the tumor stroma (e.g. fibrin, fibronectin, proteoglycans, laminin) and may activate procollagenase type IV which degrades collagen type IV, a major part of the basement membrane. Hence receptor-bound uPA will promote plasminogen activation and thus the dissolution of the tumor matrix and the basement membrane which is a prerequisite for invasion and metastasis. Tissues of primary cancer and/or metastases of the breast, ovary, prostate, cervix uteri, bladder, lung and of the gastrointestinal tract contain elevated levels of uPA compared to benign tissues. In breast cancer uPA and PAI-1 antigen in tumor tissue extracts are independent prognostic factors for relapse-free and overall survival.  相似文献   

19.
The fibrinolytic system is often the target for pathogenic bacteria, resulting in increased fibrinolysis, bacterial dissemination, and inflammation. The purpose of this study was to explore whether proteases NprB and InhA secreted by Bacillus anthracis could activate the host's fibrinolytic system. NprB efficiently activated human pro-urokinase plasminogen activator (pro-uPA), a key protein in the fibrinolytic cascade. Conversely, InhA had little effect on pro-uPA. Plasminogen activator inhibitors (PAI)-1, 2 and the uPA receptor were also targets for NprB in vitro. InhA efficiently degraded the thrombin-activatable fibrinolysis inhibitor (TAFI) in vitro. Mice infected with B. anthracis showed a significant decrease in blood TAFI levels. In another mouse experiment, animals infected with isogenic inhA deletion mutants restored TAFI levels, while the levels in the parent strain decreased. We propose that NprB and InhA may contribute to the activation of the fibrinolytic system in anthrax infection.  相似文献   

20.
Urokinase-type plasminogen activator (uPA) plays a central role in tissue remodeling processes. Most of our understanding of the role of uPA in vivo is derived from studies using gene-targeted uPA-deficient mice. To enable in vivo studies on the specific interference with uPA functionality in mouse models, we have now developed murine monoclonal antibodies (mAbs) directed against murine uPA by immunization of uPA-deficient mice with the recombinant protein. Guided by enzyme-linked immunosorbent assay, Western blotting, surface plasmon resonance, and enzyme kinetic analyses, we have selected two highly potent and inhibitory anti-uPA mAbs (mU1 and mU3). Both mAbs recognize epitopes located on the B-chain of uPA that encompasses the catalytic site. In enzyme activity assays in vitro, mU1 blocked uPA-catalyzed plasminogen activation as well as plasmin-mediated pro-uPA activation, whereas mU3 only was directed against the first of these reactions. We additionally provide evidence that mU1, but not mU3, successfully targets uPA-dependent processes in vivo. Hence, systemic administration of mU1 (i) rescued mice treated with a uPA-activable anthrax protoxin and (ii) impaired uPA-mediated hepatic fibrinolysis in tissue-type plasminogen activator (tPA)-deficient mice, resulting in a phenotype mimicking that of uPA;tPA double deficient mice. Importantly, this is the first report demonstrating specific antagonist-directed targeting of mouse uPA at the enzyme activity level in a normal physiological process in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号