首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenol oxidase exists in Drosophila hemolymph as a prophenol oxidase, A1 and A3, that is activated in vivo with a native activating system, AMM-1, by limited proteolysis with time. The polypeptide in purified prophenol oxidase A3 has a molecular weight of approximately 77,000 Da. A PCR-based cDNA sequence coding A3 has 2501 bp encoding an open reading frame of 682 amino acid residues. The potential copper-binding sites, from Trp-196 to Tyr-245, and from Asn-366 to Phe-421, are highly homologous to the corresponding sites in other invertebrates. The availability of prophenol oxidase cDNA should be useful in revealing the biochemical differences between A1 and A3 isoforms in Drosophila melanogaster that are refractory or unable to activate prophenol oxidase.  相似文献   

2.
Previous work has shown that the dynein from axonemes of sea urchin sperm consists of two distinct fractions which differ substantially in their extractability by salt. Upon gel electrophoresis of whole demembranated axonemes solubilized with sodium dodecyl sulfate, the dynein fraction shows two closely spaced bands with apparent molecular weights of 520,000 and 460,000; the proteins in these bands are termed the A and B components of the dynein. Similar electrophoresis of the soluble fraction obtained by extracting the axonemes with 0.5 M NaCl shows a single prominent band containing approximately half of the A component of the dynein (A1 component). The residue of extracted axonemes contain the other half of the A component of the dynein (A2 component) and all the B component. Densitometry of the bands indicates that the A1, A2 and B components of the dynein are present in approximately equal molar quantity. Electron microscopic studies show that the A1 component of the dynein constitutes the outer arms on the doublet tubules. Assay of ATPase activity in 0.05 M KCl and l mM ATP indicates about 65% of the total ATPase activity becomes soluble when the A1 component of the dynein is extracted with salt.  相似文献   

3.
P E Morin  E Freire 《Biochemistry》1991,30(34):8494-8500
The kinetic and thermodynamic parameters associated with the enzymatic reaction of yeast cytochrome c oxidase with its biological substrate, ferrocytochrome c, have been measured by using a titration microcalorimeter to monitor directly the rate of heat production or absorption as a function of time. This technique has allowed determination of both the energetics and the kinetics of the reaction under a variety of conditions within a single experiment. Experiments performed in buffer systems of varying ionization enthalpies allow determination of the net number of protons absorbed or released during the course of the reaction. For cytochrome c oxidase the intrinsic enthalpy of reaction was determined to be -16.5 kcal/mol with one (0.96) proton consumed for each ferrocytochrome c molecule oxidized. Activity measurements at salt concentrations ranging from 0 to 200 mM KCl in the presence of 10 mM potassium phosphate, pH 7.40, and 0.5 mM EDTA display a biphasic dependence of the electron transferase activity upon ionic strength with a peak activity observed near 50 mM KCl. The ionic strength dependence was similar for both detergent-solubilized and membrane-reconstituted cytochrome c oxidase. Despite the large ionic strength dependence of the kinetic parameters, the enthalpy measured for the reaction was found to be independent of ionic strength. Additional experiments involving direct transfer of the enzyme from low to high salt conditions produced negligible enthalpy changes that remained constant within experimental error throughout the salt concentrations studied (0-200 mM KCl). These results indicate that the salt effect on the enzyme activity is of entropic origin and further suggest the absence of a major conformational change in the enzyme due to changes in ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
El-Mashad AA  Mohamed HI 《Protoplasma》2012,249(3):625-635
Soil salinity is one of the most severe factors limiting growth and physiological response in Vigna sinensis plants. Plant salt stress tolerance requires the activation of complex metabolic activities including antioxidative pathways, especially reactive oxygen species and scavenging systems within the cells which can contribute to continued growth under water stress. The present investigation was carried out to study the role of brassinolide in enhancing tolerance of cowpea plants to salt stress (NaCl). Treatment with 0.05?ppm brassinolide as foliar spray mitigated salt stress by inducing enzyme activities responsible for antioxidation, e.g., superoxide dismutase, peroxidase, polyphenol oxidase, and detoxification as well as by elevating contents of ascorbic acid, tocopherol, and glutathione. On the other hand, total soluble proteins decreased with increasing NaCl concentrations in comparison with control plants. However, lipid peroxidation increased with increasing concentrations of NaCl. In addition to, the high concentrations of NaCl (100 and 150?mM) decreased total phenol of cowpea plants as being compared with control plants. SDS-PAGE of protein revealed that NaCl treatments alone or in combination with 0.05?ppm brassinolide were associated with the disappearance of some bands or appearance of unique ones in cowpea plants. Electrophoretic studies of ??-esterase, ??-esterase, polyphenol oxidase, peroxidase, acid phosphatase, and superoxide dismutase isoenzymes showed wide variations in their intensities and densities among all treatments.  相似文献   

5.
Attempts were made to solubilize acetylcholinesterase (AChE) from microsomal membranes isolated from rabbit white muscle. The preparative procedure included a step in which the microsomes were incubated in a solution containing high salt concentration (0.6 M KCl). About 15% of the total enzyme activity could be solubilized with dilute buffer. Addition of EDTA (1 mM), EGTA (1 mM) or NaCl (0.5 and 1 M) to the extraction buffer did not improve the solubilization yield. Several non-ionic detergents and biliary salts were then used to bring the enzyme into solution. Triton X-100, C12E9 (dodecylnonaethylenglycol monoether) and biliary salt, above their critical micellar concentration, proved to be very effective as solubilizing agents. The occurrence of multiple molecular forms in detergent-soluble AChE was investigated by means of molecular sieving, centrifugation analysis, and slab gel electrophoresis. Experiments on gel filtration showed that, during the process, half of the enzyme was transformed into aggregates, the rest of the activity appearing as peaks with Stokes radii ranging from 3.7 to 7.9 nm. Both ionic strength and detergent nature modify the number and relative proportion of these peaks. Centrifugation analysis of Triton-saline-soluble AChE yielded molecular forms of 4.8S, 10–11S, and 13.5S, whereas deoxycholate extracts revealed species of 4.8S, 10S, and 15S, providing that gradients were prepared with 0.5 M NaCl. In the absence of salt, forms of 6.5–7.5S, 10S, and 15S were measured. The lightest species was always the predominant form. Slab gel electrophoresis showed several bands (68,000–445,000). The 4.8S component only yielded bands of 65,000–70,000. The results suggest that the monomeric form of AChE (4.8S), the most abundant species in muscle microsomes, has a Stokes radius of 3.3 nm and a molecular weight in the range of 70,000.  相似文献   

6.
Calli of salt tolerant (Bhoora rata) and salt susceptible (GR11) rice varieties were cultured on Linsmaeir and Skoog’s medium containing LD50 concentration of NaCl (200 mM) and hydroxyproline (10 mM). Growth, proline content and activity of proline and IAA oxidases of the cultured tissues were determined at the end of 0, 2, 4, and 6 weeks of incubation. Hydroxyproline resistant calli of both rice varieties when cultured on Linsmaeir and Skoog’s medium containing hydroxyproline and NaCl showed increased dry weight and proline content as compared to NaCl stressed calli. The levels of proline and IAA oxidases were also low in the hydroxyproline resistant calli.  相似文献   

7.
Circular dichroism (CD) of purified Drosophila melanogaster prophenol oxidase has been measured in the range of 195-245 nm. So far, few investigations about the interaction on higher-order structures have been performed. CD spectra of Drosophila prophenol oxidase with 2-propanol activator showed fluctuation of alpha-helices. At a high temperature of 80 degrees C, prophenol oxidase was partially denatured. However, it showed reversible recovery by renaturation after returning to low temperature at 30 degrees C. The conformational changes and reversible denaturation-renaturation interaction of the prophenol oxidase protein are discussed.  相似文献   

8.
A method for the activation and measurement of insect prophenol oxidase using nitrocellulose membrane is presented. Using this method we were able to conveniently activate both crude and purified prophenol oxidase from insects belonging to three different orders. This rapid method allows for prophenol oxidase activation, in the absence of a prophenol oxidase-activating system, and in the presence of high ionic strength, protease inhibitors, or chelator.  相似文献   

9.
In the presence of high concentrations of the nonspecific polymer polyethylene glycol (PEG), intermolecular cohesive-end ligation with the DNA ligase from Escherichia coli was stimulated by high salt concentrations: 200 mM NaCl or 300 mM KCl in 10% (w/v) PEG 6000 solutions, and 100-200 mM NaCl or 150-300 mM KCl in 15% PEG 6000 solutions. Intermolecular blunt-end ligation with this ligase was also stimulated at 100-150 mM NaCl or 150-250 mM KCl in 15% PEG 6000 solutions. The extent of such intermolecular ligation increased and the salt concentrations at which ligation was stimulated extended to lower concentrations when we raised the temperature from 10 to 37 degrees C.  相似文献   

10.
The effects of long-term NaCl and KCl treatment on plant growth and antioxidative responses were investigated in Chenopodium album, a salt-resistant species widely distributed in semi-arid and light-saline areas of Xinjiang, China. Growth parameters [plant height, branch number, leaf morphology and chlorophyll (Chl) content], the level of oxidative stress [superoxide anion radical (O2 ), hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations], activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX)], the contents of non-enzymatic antioxidants [carotenoids (Car) and ascorbic acid (AsA)] and expression of selected genes were investigated. Plants were grown in the presence of 0, 50, and 300 mM NaCl or KCl for 2 months. Growth was stimulated by 50 mM NaCl or KCl, maintained stable at 300 mM NaCl, but was inhibited by 300 mM KCl. Three hundred mM NaCl did not affect O2 , H2O2, MDA, Car and AsA, but increased the activities of SOD, CAT and POX compared to the controls. RT-PCR analysis suggested that expression of some genes encoding antioxidant enzymes could be induced during long-term salt stress, which was consistent with the enzyme activities. Treatment with 300 mM KCl was associated with elevated oxidative stress, and significantly decreased Car and AsA contents. These results suggest that an efficient antioxidant machinery is important for overcoming oxidative stress induced by treatment with high NaCl concentrations in C. album. Other strategies of ion regulation may also contribute to the differential tolerance to Na and K at higher concentrations.  相似文献   

11.
Abstract

Accumulation and translocation of sulphate in excised maize roots, submerged in rising saline concentrations, were investigated. It was shown that the accumulation of sulphate is not depressed by concentrations from 1 to 50 mM of NaCl or KCl, it is weakly increased by concentrations of the same salts 100 mM and it is gradually lowered by concentrations from 1 to 100 mM of MgCl2.

On the contrary the translocation is gradually inhibited by rising concentrations of NaCl, KCl and MgCl2. A 100 mM NaCl concentration considerably loweres the translocation in 24 hours, but does not affect accumulation. Accumulation and translocation are strongly depressed by the inhibitors of oxydative phosphorylation (2,4 DNP or CCCP) and by 200 mM NaCl, KCl or MgCl2 concentrations.

It is concluded that accumulation and translocation are active processes as they are reduced by 2,4 DNP or CCCP; that the small increase in accumulation observed by 100 mM NaCl or KCl concentration is due probably to the discharging action of cations exercited on the membranes of root cells and that only the second step of ion translocation, i.e. ion secretion in xylem, is sensible to the presence of high saline concentrations of NaCl or KCl in the outer medium.  相似文献   

12.
Cilia of Tetrahymena thermophila possess adenylate kinase [ATP:AMP phosphotransferase, EC 2.7.4.3] activity. More than 95% of the total activity was recovered in the axonemal fraction when cilia were demembranated with 0.2% Nonidet P-40. There was no loss of the specific activity of adenylate kinase when axonemes were thoroughly washed with HMEK solution (10 mM HEPES, 5 mM MgCl2, 0.1 mM EDTA, and 0.1 M KCl, pH 7.4). These results suggest that adenylate kinase is tightly bound to axoneme. Solubilization of adenylate kinase was markedly increased when axonemes were incubated in HME buffer (10 mM HEPES, 1 mM MgCl2, 0.1 mM EDTA, pH 7.4) containing concentrations of NaCl (or KCl) exceeding 1 M. Therefore, routine isolation of adenylate kinase from axonemes involved pre-extracting axonemes with 0.5 M NaCl in HME buffer followed by extraction in HME buffer containing 1.5 M NaCl. Native-gel electrophoresis of the high salt extract revealed two protein bands (band I and band III). An active staining for adenylate kinase showed a single active band corresponding to the position of band III. Two-dimensional gel electrophoresis using native-gel electrophoresis in the first dimension and SDS-PAGE in the second dimension suggests that band III protein contains at least nine polypeptides ranging from 21 to 110 kDa.  相似文献   

13.
The response of glycolate oxidase from shoots of Salicornia europaea L. and from leaves of Pisum sativum L. to salt treatment during assay was studied by DCPIP reduction and O2 uptake. In Pisum there was found up to five times more glycolate oxidase activity per gram fresh weight than in Salicornia. However, the calculation of the specific activity pointed out that this result was caused only by the high level of enzyme protein in Pisum, and that specific activity from both species was of equal size. By the DCPIP method it was shown that in test media containing up to 1.0 M NaCl or KCl glycolate oxidase of Salicornia was of equal size compared with the control (medium without additional salts). With 2.0 M NaCl or KCl the activity decreased by about 80 and 30% respectively. Glycolate oxidase of Pisum was somewhat more salt sensitive. 1.0 M NaCl or KCl reduced the activity by about 35%. In the presence of 2.0 M NaCl or KCl the enzyme activity from Pisum was inhibited to about 80 and 60% respectively. By substituting sulfates for chlorides the activity of glycolate oxidase from both Salicornia and Pisum was stimulated strongly. 1.5 M Na2SO4 and 0.5 M K2SO4 (both are saturated solutions) caused an increase of glycolate activity from Salicornia of about 225 and 185% respectively, and from Pisum of about 50 and 30% respectively. Studying the response of glycolate oxidase to salt treatment by O2 uptake one must establish that with this method the degree of inhibition of enzyme activity at higher salt concentrations was always more severe than with dye reduction. Addition of 1.0 M NaCl or KCl to the assay medium caused an inhibition of glycolate oxidase activity from Salicornia of about 50% and from Pisum of about 60%. 2.0 M NaCl or KCl reduced the enzyme activity of both Salicornia and Pisum to nearly 10% of control activity. Furthermore, in contrast to DCPIP reduction no stimulating effect of sulfates on glycolate oxidase activity was detectable. Indeed, the inhibitory effect of sulfates was very slight. 1.0 M Na2SO4 caused a mean inhibition of glycolate oxidase activity of only 15% with both species, and in the presence of 1.5 M Na2SO4 50% of control activity was measured. At maximal K2SO4 concentrations (0.5 M) glycolate oxidase from both Salicornia and Pisum was also unaffected. It is supposed that the described salt tolerance of glycolate oxidase in vitro, possibly is due to an adaptation of the enzyme to high salt levels within peroxisomes in vivo.  相似文献   

14.
Soluble proteins released into the medium of aortic tissues in culture behave as substrates for the enzyme lysyl oxidase. The reaction shows an unusual dependence on the concentration of neutral salts in the assay medium. Practically no enzyme activity was observed in Tris-HCl, 0.005 m, pH 7.6 buffer. However, supplementing the buffer with high concentrations of KCl, KBr, NaCl, and (NH4)2SO4 (in decreasing order of effectiveness) accelerated velocities as much as 10-fold. CaCl2, KSCN, and KI at increasing concentrations became strongly inhibitory. β-Aminopropionitrile, a specific inhibitor of lysyl oxidase, effectively blocked the catalysis in low and high KCl. The salt-stimulated effects on lysyl oxidase activity were not as noticeable when insoluble proteins were used as substrates. Kinetic studies employing double reciprocal plots revealed that high KCl concentrations (2.0 m) raised the maximum velocity of the reaction but did not alter the apparent Km. Thus high salt concentrations did not affect the binding of the soluble substrate to the enzyme. In high salts, however, more radioactive substrate proteins appeared to bind to the enzyme, suggesting that the high salt environment increases the fraction of the total enzyme potentially capable of binding to and catalyzing a reaction with the substrate.  相似文献   

15.
The cell sap of the internode ofNitella flexilis was replaced with the isotonic artificial pond water of high Ca2+-concentration (0.1 mM KCl, 0.1 mM NaCl, 10 mM CaCl2 and 275 mM mannitol) and changes in osmotic value and concentrations of K+, Na+ and Cl of the cells were followed. When the operated cells were incubated in the artificial pond water containing 0.1 mM each of KCl, NaCl, CaCl2, they survived for only a short period of time (<10 hr). The cells did not absorb ions from the artificial pond water and showed a conspicuous decrease in the rate of cytoplasmic streaming. In such cell the concentration of K+ in the protoplasm decreased significantly. In order to reverse normal concentration gradients of K+ and Na+ across the protoplasmic layer, the cells of low vacuolar ionic concentrations were incubated in the artificial cell sap (90 mM KCl, 40 mM NaCl, 15 mM CaCl2, 10 mM MgCl2). It was found that the cells rapidly absorbed much K+, Na+ and Cl and survived for a longer period (1–2 days). During this period the rate of cytoplasmic streaming was nearly normal. Furthermore, the cell lost much mannitol, indicating an enormous increase in permeability to it. Since both absorption of ions and leakage of mannitol at 1 C occurred at nearly the same rates as at 22 C, the processes are assumed to be passive.  相似文献   

16.
Phenol oxidase, a copper-containing enzyme, is widely distributed not only in animals but also in plants and fungi, which is responsible for initiating the biosynthesis of melanin. Activation of prophenol oxidase in arthropods is important in host defense. However, the prophenol oxidase-activating system remains poorly understood at the molecular level. Here we show that the coagulation cascade of the horseshoe crab Tachypleus tridentatus is linked to prophenol oxidase activation, with the oxygen carrier hemocyanin functioning as a substitute for prophenol oxidase. Tachypleus clotting enzyme functionally transforms hemocyanin to phenol oxidase, and the conversion reaches a plateau at 1:1 stoichiometry without proteolytic cleavage. The active site-masked clotting enzyme also has the same effect, suggesting that complex formation of the clotting enzyme with hemocyanin is critical for the conversion. The two systems of blood coagulation and prophenol oxidase activation may have evolved from a common ancestral protease cascade.  相似文献   

17.
This study shows that cytosolic androgen receptor of rat ventral prostate sediments at 10-11 S on conventional low salt sucrose density gradients (SDG), and at 4.6 S on high salt SDG, whether it is activated or not; inclusion of 10 mM Na2MoO4 in all buffers does not alter these sedimentation coefficients. In the presence of 50 mM Na2MoO4 non-activated and activated androgen receptors sediment in high salt SDG at 7-8 S and 4.6 S, respectively. Thus the presence of high concentrations of molybdate during centrifugation inhibits the KCl induced disaggregation of receptor into subunits. Similar effects are observed on Sephacryl-S200 gel filtration; in 50 mM MoO2-4 and 0.4 M KCl non-activated receptor has an estimated Stokes radius of 67 A; this value decreases to 52 A upon activation in the presence of proteolysis inhibitors; omission of molybdate during chromatography yielded 52 A and 27 A entities. Estimated mol. wts are 198,000 Daltons for the non-activated 67 A form and 98,000 Daltons for the activated 52 A receptor. Sodium molybdate (50 mM) prevents temperature (18 degrees C) and high ionic strength (0.4 M KCl) induced receptor activation. This inhibition was overcome by removing molybdate by centrifugal gel filtration, or by increasing the KCl concentration to 0.8 M. The inhibitory effects of molybdate on salt induced receptor disaggregation into activated subunits are no longer observed at pH greater than 7.4 or after chemical modification of sulfhydryl groups. Once androgen receptor has been disaggregated into its activated subunits the activated state is maintained even upon reassociation to 10-11 S aggregates in low salt. The relative concentrations of KCl and molybdate are critical; thus, 10 mM Na2MoO4/0.4 M KCl and 50 mM Na2MoO4/0.8-1.2 M KCl did not differentiate activated from non-activated androgen receptor based on their hydrodynamic properties. In the presence of 0.4 M KCl and 50 mM molybdate, however, the hydrodynamic properties of androgen receptor can be correlated with receptor activation.  相似文献   

18.
It was examined how essential cations, Ca2+ and K+, can mitigate the toxic effects of NaCl on two different almond species (Prunus amygdalus Batsch) rootstocks, Garnem (GN15) and Bitter Almond. The tree growth parameters (water potential (Ψw), gas exchange, nutrient uptake) and leaf chlorophyll (Chl) content were measured in control and NaCl-treated plants with or without KCl or CaCl2 supplements. The addition of CaCl2 and KCl to Bitter Almond trees reduced their dry weight, shoot growth and leaf number although net photosynthetic assimilation rate (A) was not affected. These results indicated that changing of photo-assimilates flux to proline and/or soluble sugars synthesis may help to increase leaf Ψw. The Garnem trees also did not respond to the CaCl2 and KCl addition indicating that the plants are already getting enough of these two cations (Ca2+ and K+). In both rootstocks, NaCl in the medium reduced growth attributes, Ψw, A, stomatal conductance (gs), and leaf Chl content. When CaCl2 and KCl fertilizers were added together with NaCl to Bitter Almond trees, leaf K+ and Ca2+ contents increased while Na+ and Cl decreased leading to higher Ca/Na and K/Na ratios, but shoot growth was not improved and even declined compared to NaCl-treated trees. It appears that the addition of salts further aggravated osmotic stress as indicated by the accumulation of proline and soluble sugars in leaf tissues. The addition of KCl or CaCl2 to NaCl-treated GN15 trees did not increase A, leaf Ψw, and shoot growth but improved ionic balances as indicated by higher Ca/Na and K/Na ratios. The reduction in A was mainly due to non-stomatal limitations in GN15, possibly due to the degradation of Chl a, unlike Bitter Almond, for which the reduction of A was due to stomata closure. The improvement in ionic balances and water status of Bitter Almond trees in response to addition of KCl or CaCl2 was apparently offset by a high sensitivity to Cl; therefore, no-chloride salts should be the preferred forms of fertilizers for this rootstock. Both rootstocks were sensitive to soil salinity and cation supplements were of limited value in mitigating the effect of excessive salt concentrations.  相似文献   

19.
Twenty days’ exposure to 50 or 100 mM NaCl in the rooting medium substantially increased fresh and dry weights of seedling shoots of the recretohalophyte Limonium sinense while 200 or 300 mM were increasingly inhibitory. KCl treatment was only slightly stimulating (50 mM) or strongly inhibitory (100–300 mM). Lesser effects on leaf area were also seen. Diameter of foliar salt glands was significantly larger than that of controls in 100 and 200 mM NaCl with the effect being reversed at higher concentrations. Gland enlargement was also observed in the presence of 100 mM KCl, while larger concentrations reduced gland size. Generally, gland diameter was larger in the presence of NaCl than in KCl. NaCl and KCl also increased gland number per leaf and secretion rate per gland. At 100 and 200 mM NaCl or KCl, Na+ secretion per leaf from NaCl-treated plants exceeded K+ secretion rate from KCl-treated plants while at 200 mM, Na+ secretion per gland was significantly higher for Na+ than for K+. Evidence of cell death in leaves of salt-treated plants using Evans blue staining indicates that release of cell contents through loss of membrane integrity contributed to the secretion values. We conclude that the greater tolerance of L. sinenseto to NaCl compared to KCl is linked to the more effective secretion of Na+ than of K+ and, in turn, to a greater stimulation of salt gland formation and activity and larger gland diameter.  相似文献   

20.
In vitro-grown shoots and calli of Withania somnifera, an important medicinal plant, were exposed to various types of salts under in vitro culture conditions. Membrane permeability, lipid peroxidation, and the antioxidant system increased in shoots as well as in unorganized callus tissues under all the three concentrations of KCl, NaCl, KNO3, NaNO3, and CaCl2. The growth responses of shoots and callus cultures under various salt treatments revealed that the tissue could grow better under NaCl and KNO3 compared to other salts and the in vitro shoots appeared healthy at 50?mM concentration of NaCl and KNO3. The activity of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase, guaiacol peroxidase, lipoxygenase, polyphenol oxidase, and glutathione reductase increased under salt treatments, especially at higher concentrations. The greatest activity increase was recorded for peroxidases, whereas CAT was the least responsive. Only two isoforms, Mn-superoxide dismutase (Mn-SOD) and Fe-SOD, could be visualized in callus tissue while Cu/Zn-SOD was absent. Diaphorase 4 was totally missing in callus tissue and was detected only in shoots. Phenolics accumulated at all the concentrations of the salts tested as an induced protective response. The higher concentration of CaCl2 produced maximum increases in antioxidants and enzymatic activities compared to other salts. Thus, for W. somnifera the presence of excess calcium in the growing medium is most deleterious compared to other salts. Results also suggest that the nonenzymatic and enzymatic antioxidant systems of both the tissues played a primary role in combating the imposed salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号