首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ichthyotoxic dinoflagellate Pfiesteria piscicida Steidinger et Burkholder has a complex life cycle with several heterotrophic flagellated and amoeboid stages. A prevalent flagellated form, the nontoxic zoospore stage, has a proficient grazing ability, especially on cryptophyte prey. Although P. piscicida zoospores lack the genetic capability to synthesize chloroplasts, they can obtain functional chloroplasts from algal prey (i.e. kleptoplastidy), as demonstrated here with a cryptophyte prey. Zoospores grown with Rhodomonas sp. Karsten CCMP757 (Cryptophyceae) grazed the cryptophyte population to minimal densities. After placing the cultures in near darkness where cryptophyte recovery was restricted and further prey ingestion did not occur, the time-course patterns in growth, prey chloroplast content·zoospore−1, and prey nucleus content·zoospore−1 were followed. Ingested chloroplasts were selectively retained in the dinoflagellate, as indicated by the decline and, ultimately, near absence of cryptophyte nuclei in plastid-containing zoospores. Chloroplasts retained inside P. piscicida cells for at least a week were photosynthetically active, as indicated by starch accumulation and microscope-autoradiographic measurements of bicarbonate uptake. Recognition that P. piscicida can function as a phototroph broadens our perspective of the physiological ecology of the dinoflagellate because it suggests that, at least during part of its life cycle, P. piscicida 's growth and survival might be affected by photoregulation and nutritional control of photosynthesis.  相似文献   

2.
In studying how environmental factors control the population dynamics of Pfiesteria piscicida Steidinger et Burkholder, we examined the influence of light regime on kleptoplastidic photosynthesis, growth, and grazing. Prey (Rhodomonas sp.)‐saturated growth rate of P. piscicida increased (0.67 ± 0.03 d?1 to 0.91 ± 0.11 d?1) with light intensity varying from 0 to 200 μmol photons·m?2·s?1. No significant effect was observed on grazing, excluding the possibility that light enhanced P. piscicida growth through stimulating grazing. Light‐grown P. piscicida exhibited a higher gross growth efficiency (0.78 ± 0.10) than P. piscicida incubated in the dark (0.32 ± 0.16), and photosynthetic inhibitors significantly decreased growth of recently fed populations. These results demonstrate a role of kleptoplastidic photosynthesis in enhancing growth in P. piscicida. However, when the prey alga R. sp. was depleted, light's stimulating effect on P. piscicida growth diminished quickly, coinciding with rapid disappearance of Rhodomonas‐derived pigments and RUBISCO from P. piscicida cells. Furthermore, the effect of light on growth was reversed after extended starvation, and starved light‐grown P. piscicida declined at a rate significantly greater than dark‐incubated cultures. The observed difference in rates of decline appeared to be attributable to light‐dependent cannibalism. Using a 5‐chloromethylfluorescein diacetate staining technique, cannibalistic grazing was observed after 7 days of starvation, at a rate four times greater under illumination than in the dark. The results from this study suggest that kleptoplastidy enhances growth of P. piscicida only in the presence of algal prey. When prey is absent, P. piscicida populations may become vulnerable to light‐stimulated cannibalism.  相似文献   

3.
The putatively toxic dinoflagellates Pseudopfiesteria shumwayae (Glasgow et J. M. Burkh.) Litaker, Steid., P. L. Mason, Shields et P. A. Tester and Pfiesteria piscicida Steid. et J. M. Burkh. have been implicated in massive fish kills and of having negative impacts on human health along the mid‐Atlantic seaboard of the USA. Considerable debate still remains as to the mechanisms responsible for fish mortality (toxicity vs. micropredation) caused by these dinoflagellates. Genetic differences among these cultures have not been adequately investigated and may account for or correlate with phenotypic variability among strains within each species. Genetic variation among strains of Ps. shumwayae and P. piscicida was examined by PCR–RFLP analysis using cultures obtained from the Provasoli‐Guillard National Center for Culture of Marine Phytoplankton (CCMP), as well as those from our own and other colleagues’ collection efforts. Examination of restriction digest banding profiles for 22 strains of Ps. shumwayae revealed the presence of 10 polymorphic restriction endonuclease sites within the first and second internal transcribed spacers (ITS1 and ITS2) and the 5.8S gene of the rDNA complex, and the cytochrome oxidase subunit I (COI) gene. Three compound genotypes were represented within the 22 Ps. shumwayae strains. Conversely, PCR–RFLP examination of 14 strains of P. piscicida at the same ITS1, 5.8S, and ITS2 regions revealed only one variable restriction endonuclease site, located in the ITS1 region. In addition, a dinoflagellate culture listed as P. piscicida (CCMP 1928) and analyzed as part of this study was identified as closely related to Luciella masanensis P. L. Mason, H. J. Jeong, Litaker, Reece et Steid.  相似文献   

4.
Grazing and growth of Pfiesteria piscicida (Pfiest) were investigated using batch and cyclostat cultures with Rhodomonas sp. (Rhod) as prey. Observed maximum growth rates (1.4 d?1) and population densities (2 × 105 cells·mL?1) corresponded to values predicted by Monod functions (1.76 d?1; 1.4 × 105 cells·mL?1). In batch cultures under a range of prey‐to‐predator ratios (0.1:1 to 180:1) and prey concentrations (1000–71,000 cells·mL?1), Rhodomonas sp. was always depleted rapidly and P. piscicida concentrations increased briefly. The rate of Rhodomonas sp. depletion and the magnitude of P. piscicida population maxima depended on the prey‐to‐predator ratio and prey concentration. Starvation resulted in cell cycle arrest at G1 and G2+M and ultimately the demise of both P. piscicida and Rhodomonas sp. populations, demonstrating the dependence of P. piscicida on the supply of appropriate prey. The depletion of Rhodomonas sp. populations could be attributed directly to grazing, because P. piscicida did not exert detectable inhibitory effects on the growth of Rhodomonas sp. but grazed intensely, with maximum grazing rates>10 Rhod·Pfiest?1·d?1 and with no apparent threshold prey abundance for grazing. The results suggest that 1) the abundance of appropriate prey may be an important factor regulating P. piscicida abundance in nature, 2) P. piscicida may control prey population, and 3) high growth and grazing potentials of P. piscicida along with cell cycle arrest may confer survival advantages.  相似文献   

5.
The putative harmful algal bloom dinoflagellate, Pfiesteria piscicida (Steidinger et Burkholder), frequently co‐occurs with other morphologically similar species collectively known as Pfiesteria‐like organisms (PLOs). This study specifically evaluated whether unique sequences in the internal transcribed spacer (ITS) regions, ITS1 and ITS2, could be used to develop PCR assays capable of detecting PLOs in natural assemblages. ITS regions were selected because they are more variable than the flanking small subunit or large subunit rRNA genes and more likely to contain species‐specific sequences. Sequencing of the ITS regions revealed unique oligonucleotide primer binding sites for Pfiesteria piscicida, Pfiesteria shumwayae (Glasgow et Burkholder), Florida “Lucy” species, two cryptoperidiniopsoid species, “H/V14” and “PLO21,” and the estuarine mixotroph, Karlodinium micrum (Leadbetter et Dodge). These PCR assays had a minimum sensitivity of 100 cells in a 100‐mL sample (1 cell·mL?1) and were successfully used to detect PLOs in the St. Johns River system in Florida, USA. DNA purification and aspects of PCR assay development, PCR optimization, PCR assay controls, and collection of field samples are discussed.  相似文献   

6.
Despite use of excellent molecular techniques, Litaker et al. (2002) cannot provide insights about the life history of toxic Pfiesteria piscicida because they showed no data in support of having used toxic strains; rather they presented evidence that they used non‐inducible strains. Litaker et al. did not find amoeboid stages or a chrysophyte‐like cyst stage in several cultures and unequivocally concluded that the stages do not exist in all P. piscicida strains. Thus, they did not consider the tenet that absence of evidence does not constitute proof of absence. Apparent discrepancies between the research by Litaker et al. and previous research on Pfiesteria can be resolved as follows: First, Litaker et al. did not use toxic strains. We have reported findings (similar to Litaker et al.) showing few amoeboid transformations in non‐inducible strains, which manifest some but not all of the forms that have been documented in some toxic strains. We, and others, have documented active toxicity to fish, transformations to amoebae, and chrysophyte‐like cysts in some clonal toxic strains. Second, the data from several recent publications, which were available but not mentioned by Litaker et al. or by Coats (2002) in accompanying commentary, have verified P. piscicida amoebae, chrysophyte‐like cysts, and other stages in some toxic strains through a combination of approaches including PCR data from clonal cultures.  相似文献   

7.
Water quality, microbial contamination, prior fish health, and variable results have been major impediments to identifying the cause and mechanism of fish mortality in standard aquarium‐format Pfiesteria bioassays. Therefore, we developed a sensitive 96‐h larval fish bioassay for assessing Pfiesteria spp. pathogenicity using six‐well tissue culture plates and 7‐day‐old larval cyprinodontid fish. We used the assay to test pathogenicity of several clonal lines of Pfiesteria piscicida Steidinger and Burkholder and P. shumwayae Glasgow and Burkholder that had been cultured with algal prey for 2 to 36 months. The P. shumwayae cultures exhibited 80%–100% cumulative mortality in less than 96 h at initial zoospore densities of approximately 1000 cells·mL?1. No fish mortalities occurred with P. piscicida at identical densities or in controls. In a dose‐response assay, we demonstrated a strong positive correlation between dinospore density and fish mortality in a highly pathogenic culture of P. shumwayae, generating a 96‐h LD50 of 108 zoospores·mL?1. Additionally, we applied the assay to evaluate a 38‐L P. shumwayae bioassay that was actively killing fish and compared results with those from exposures of juvenile tilapia (Oreochromis niloticus) in a 500‐mL assay system. Water from the fish‐killing 38‐L assay was filtered and centrifuged to produce fractions dominated by dinoflagellates, bacteria, or presumed ichthyotoxin (cell‐free fraction). After 96 h, the larval fish assay exhibited 50%–100% cumulative mortality only in fractions containing dinoflagellates, with no mortalities occurring in the other fractions. The 500‐mL bioassay with tilapia produced inconsistent results and demonstrated no clear correlation between mortality and treatment. The new larval fish bioassay was demonstrated as a highly effective method to verify and evaluate dinoflagellate pathogenicity.  相似文献   

8.
Pfiesteria shumwayae Glasgow et Burkholder is assigned to a new genus Pseudopfiesteria gen. nov. Plate tabulation differences between Pfiesteria and Pseudopfiesteria gen. nov. as well as a maximum likelihood phylogenetic analysis based on rDNA sequence data warrant creation of this new genus. The Kofoidian thecal plate formula for the new genus is Po, cp, X, 4′, 1a, 6′′, 6c, PC, 5+s, 5′′′, 0p, 2′′′′. In addition to having six precingular plates, P. shumwayae comb. nov. also has a distinctive diamond or rectangular‐shaped anterior intercalary plate. Both Pfiesteria and Pseudopfiesteria gen. nov. are reassigned to the order Peridiniales based on an apical pore complex (APC) with a canal (X) plate that contacts a symmetrical 1′, four to five sulcal plates, and the conservative hypothecal tabulation of 5′′′, 0p, and 2′′′′. These morphological characters and the life histories of Pfiesteria and Pseudopfiesteria are consistent with placement of both genera in the Peridiniales. Based on the plate tabulations for P. shumwayae, P. piscicida, and the closely related “cryptoperidiniopsoid” and “lucy” groups, the family Pfiesteriaceae is amended to include species with the following tabulation: 4‐5′, 0‐2a, 5‐6′′, 6c, PC, 5+s, 5′′′, 0p, and 2′′′′ as well as an APC containing a pore plate (Po), a closing plate (cp), and an X plate; the tabulation is expanded to increase the number of sulcal plates and to include a new plate, the peduncle cover (PC) plate. Members of the family have typical dinoflagellate life cycles characterized by a biflagellated free‐living motile stage, a varying number of cyst stages, and the absence of multiple amoeboid stages.  相似文献   

9.
The newly described toxic dinoflagellate Pfiesteria piscicida is a polymorphic and multiphasic species with flagellated, amoeboid, and cyst stages. The species is structurally a heterotroph; however, the flagellated stages can have cleptochloroplasts in large food vacuoles and can temporarily function as mixotrophs. The flagellated stage has a typical mesokaryotic nucleus, and the theca is composed of four membranes, two of which are vesicular and contain thin plates arranged in a Kofoidian series of Po, cp, X, 4′, 1a, 5″, 6c, 4s, 5″′, and 2″″. The plate tabulation is unlike that of any other armored dinoflagellate. Nodules often demark the suture lines underneath the outer membrane, but fixation protocols can influence the detection of plates. Amoeboid benthic stages can be filose to lobose, are thecate, and have a reticulate or spiculate appearance. Amoeboid stages have a eukaryotic nuclear profile and are phagocytic. Cyst stages include a small spherical stage with a honeycomb, reticulate surface and possibly another stage that is elongate and oval to spherical with chrysophyte-like scales that can have long bracts. The species is placed in a new family, Pfiesteriaceae, and the order Dinamoebales is emended.  相似文献   

10.
Sexual life cycle events in Pfiesteria piscicida and cryptoperidiniopsoid heterotrophic dinoflagellates were determined by following the development of isolated gamete pairs in single‐drop microcultures with cryptophyte prey. Under these conditions, the observed sequence of zygote formation, development, and postzygotic divisions was similar in these dinoflagellates. Fusion of motile gamete pairs each produced a rapidly swimming uninucleate planozygote with two longitudinal flagella. Planozygotes enlarged as they fed repeatedly on cryptophytes. In <12 h in most cases, each planozygote formed a transparent‐walled nonmotile cell (cyst) with a single nucleus. Zygotic cysts did not exhibit dormancy under these conditions. In each taxon, dramatic swirling chromosome movements (nuclear cyclosis) were found in zygote nuclei before division. In P. piscicida, nuclear cyclosis occurred in the zygotic cyst or apparently earlier in the planozygote. In the cryptoperidiniopsoids, nuclear cyclosis occurred inthe zygotic cyst. After nuclear cyclosis, a single cell division occurred in P. piscicida and cryptoperidiniopsoid zygotic cysts, producing two offspring that emerged as biflagellated cells. These two flagellated cells typically swam for hours and fed on cryptophytes before encysting. A single cell division in these cysts produced two biflagellated offspring that also fed before encysting for further reproduction. This sequence of zygote development and postzygotic divisions typically was completed within 24 h and was confirmed in examples from different isolates of each taxon. Some aspects of the P. piscicida sexual life cycle determined here differed from previous reports.  相似文献   

11.
Interactions between bacteria and species of harmful and/or toxic algae are potentially important factors affecting both the population dynamics and the toxicity of these algae. Recent reports of bacteria lethal to certain harmful algal bloom (HAB) species, coupled with a rapidly evolving interest in attempting to minimize the adverse effects of HABs through various prevention, control, and mitigation strategies, have focused attention on defining the role of algicidal bacteria in bloom termination. The aim of the present study was to determine whether algicidal bacteria active against Gymnodinium breve Davis, a dinoflagellate responsible for frequent and protracted red tides in the Gulf of Mexico, are present in the waters of the west Florida shelf. To date, we have isolated two bacterial strains from this region lethal to G. breve and have begun to characterize the algicidal activity of one of these strains, 41-DBG2. This bacterium, a yellow-pigmented, gram-negative rod, was isolated from waters containing no detectable G. breve cells, suggesting that such bacteria are part of the ambient microbial community and are not restricted to areas of high G. breve abundance. Strain 41-DBG2 produced a dissolved algicidal compound(s) that was released into the growth medium, and the algicide was effective against the four Gulf of Mexico G. breve isolates tested as well as a closely related HAB species that also occurs in this region, Gymnodinium mikimotoi Miyake et Kominami ex Oda. Nonetheless, data showing that a nontoxic isolate of Gymnodinium sanguineum Hirasaka from Florida Bay was not affected indicate that the algicidal activity of this bacterium does exhibit a degree of taxonomic specificity. Our efforts are currently being directed at resolving several critical issues, including the identity of the algicide(s), the mechanisms regulating its production and ability to discriminate between target algal species, and how the growth rate of 41-DBG2 is affected by the presence of G. breve cells. We have also proposed a conceptual model for interactions between algicidal bacteria and their target species to serve as a testable framework for ensuing field studies.  相似文献   

12.
Laboratory and field measurements of the toxin content in Karenia brevis cells vary by >4‐fold. These differences have been largely attributed to genotypic variations in toxin production among strains. We hypothesized that nutrient limitation of growth rate is equally or more important in controlling the toxicity of K. brevis, as has been documented for other toxic algae. To test this hypothesis, we measured cellular growth rate, chlorophyll a, cellular carbon and nitrogen, cell volume, and brevetoxins in four strains of K. brevis grown in nutrient‐replete and nitrogen (N)‐limited semi‐continuous cultures. N‐limitation resulted in reductions of chlorophyll a, growth rate, volume per cell and nirtogen:carbon (N:C) ratios as well as a two‐fold increase (1%–4% to 5%–9%) in the percentage of cellular carbon present as brevetoxins. The increase in cellular brevetoxin concentrations was consistent among genetically distinct strains. Normalizing brevetoxins to cellular volume instead of per cell eliminated much of the commonly reported toxin variability among strains. These results suggest that genetically linked differences in cellular volume may affect the toxin content of K. brevis cells as much or more than innate genotypic differences in cellular toxin content per unit of biomass. Our data suggest at least some of the >4‐fold difference in toxicity per cell reported from field studies can be explained by limitation by nitrogen or other nutrients and by differences in cell size. The observed increase in brevetoxins in nitrogen limited cells is consistent with the carbon:nutrient balance hypothesis for increases in toxins and other plant defenses under nutrient limitation.  相似文献   

13.
We examined the influence of N or P depletion, alternate N‐ or P‐sources, salinity, and temperature on karlotoxin (KmTx) production in strains of Karlodinium veneficum (D. Ballant.) J. Larsen, an ichthyotoxic dinoflagellate that shows a high degree of variability of toxicity in situ. The six strains examined represented KmTx 1 (CCMP 1974, MD 2) and KmTx 2 (CCMP 2064, CCMP 2283, MBM1) producers, and one strain that did not produce detectable karlotoxin under nutrient‐replete growth conditions (MD 5). We hypothesized that growth‐limiting conditions would result in higher cell quotas of karlotoxin. KmTx was present in toxic strains during all growth phases and increased in stationary and senescent phase cultures under low N or P, generally 2‐ to 5‐fold but with some observations in the 10‐ to 15‐fold range. No karlotoxin was observed under low‐N or low‐P conditions in the nontoxic strain MD 5. Nutrient‐quality (NO3, NH4, urea, and glycerophosphate) did not affect growth rate, but growth on NH4 produced 2‐ to 3‐fold higher cellular toxicity and a 50% higher ratio of KmTx 1‐1:KmTx 1‐3 in CCMP 1974. CCMP 1974 showed higher cellular toxicity at low salinity (≤5 ppt) and high temperature (25°C). Our results suggested that given the presence of a toxic strain of K. veneficum in situ, the existence of environmental conditions that favor cellular accumulation of karlotoxin is likely a significant factor underlying K. veneficum–related fish kills that require both high cell densities (104 · mL?1) and high cellular toxin quotas relative to those generally observed in nutrient‐replete cultures.  相似文献   

14.
We describe temporal changes in the genetic structure of populations of the dinoflagellate Prorocentrum micans Ehrenberg over a period of 2 years at Scripps Pier (La Jolla, CA, USA). We collected 12 water samples over the course of two blooms and analyzed 166 single‐cell isolates using randomly amplified polymorphic DNA analysis. Six PCR primers uncovered 27 polymorphic markers, allowing the identification of 40 unique haplotypes. Analysis of molecular variance demonstrated that >92% of the genetic variance was partitioned within water samples, providing evidence of high levels of genetic diversity and possibly sexual reproduction. Although the level of genetic diversity remained fairly stable over the sampled time interval, several populations (sampled in June 1998 and March 1999) exhibited significantly different genetic composition, demonstrating differences among bloom and nonbloom periods. About 40% of the isolates in each sample were identified as one haplotype, suggesting that a genetically distinct subgroup was a common member of the populations during the sampled periods. The composition of the remaining isolates was genetically diverse and changed over time, indicating rapid responses (days) to changing environmental conditions or extensive genetic spatial patchiness (kilometers). Within the limitations of our sampling, these two genetically distinct groups appear to exhibit different population dynamics (one stable and the other variable), suggesting that genetic diversity may be closely linked to the change in abundance of phytoplankton on ecological time scales.  相似文献   

15.
It is becoming increasingly clear that bacteria can play an important role in the toxin and population dynamics of harmful algal bloom (HAB) events. In this paper, we document protocols and strategies that can be used to identify bacterial genes involved in either the production of toxic compounds and/or the establishment and maintenance of relationships between bacteria and algae. The protocols we tested involved transposon mutagenesis and complementation with broad-host-range plasmids. We tested six bacterial strains thought to be involved, either directly or indirectly, in the production of toxins associated with paralytic shellfish poisoning (PSP). Five strains were resistant to transformation under the growth conditions used. However, a single strain, Pseudomonas stutzeri SF/PS, was readily transformed when grown under appropriate conditions. This bacterium has been shown to accumulate PSP toxins and to increase toxin production when added to axenic cultures of a toxic dinoflagellate, Alexandrium lusitanicum . We conclude that a transposon mutagenesis strategy can be used to identify genes involved in HAB events.  相似文献   

16.
17.
Fish and invertebrate kills were reported from September to October 1996 in the Indian River, Florida, coincident with blooms of the dinoflagellate Gymnodinium pulchellum Larsen 1994. This is the first report of a bloom of this species in the Americas. Fish and invertebrate species affected were common snook ( Centropomus undecimalis ), striped mullet ( Mugil cephalus ), hardhead catfish ( Arius felis ), red drum ( Sciaenops ocellatus ), sheepshead ( Archosargus probatocephalus ), black drum ( Pogonias cromis ), blue crab ( Callinectes sapidus ), and shrimp ( Penaeus spp.). However, Gymnodinium pulchellum has previously caused fish kills in Japan and Australia. Examination of archived phytoplankton samples from a fish kill reported in the same area of the Indian River in August 1990 confirmed the presence of high concentrations of G. pulchellum. Fish kills associated with Alexandrium monilatum and potentially Pfiesteria -like species in the Indian River also are discussed. Scanning electron microscopy provided additional morphological detail on this distinct but little-known dinoflagellate.  相似文献   

18.
A PCR (polymerase chain reaction)-based assay for the detection of Alexandrium species in cultured samples using rDNA-targeted probes was developed. The internal transcribed spacers 1 and 2 (ITS1 and ITS2) and the 5.8S ribosomal RNA gene (rDNA) from cultured isolates of A. tamarense (Lebour) Taylor, A. catenella (Whedon et Kofoid) Balech, A. fundyense Balech and A. lusitanicum Balech were amplified using PCR and sequenced. Sequence comparisons showed that the 5.8S and ITS1-ITS2 regions contain sequences specific for the Alexandrium genus, especially at the 3' end of the 5.8S coding region. PCR primers and a radioactive 32P-labeled DNA probe were devised for this region. The cross-reactivity of the PCR primers and probe was tested against cultured isolates of Alexandrium and other dinoflagellates and diatoms. All the Alexandrium isolates screened reacted toward the genus-specific probe; in contrast, the other groups of microalgae (dinoflagellates and diatoms) did not react with the probe. Furthermore, the PCR amplification technique combined with the use of the rDNA-target probe allowed us to develop a method for the detection of Alexandrium cells in cultured samples. This PCR method might offer a new approach for the identification and enumeration of the HAB (harmful algal bloom) species present in natural phytoplankton populations.  相似文献   

19.
Ammoniun, nitrate and nitrite update by Fucus spiralis L. from the Massachusetts coast was examined. Uptake of all appeared to follow saturation type nutrient uptake kinetics, with uptake often restricted at ambient nutrient concentrations. Although only relatively large difference in K8 values could be easily distinguished, K8 values for NO3? and NH4+ were generally similar and low compared with NO2?. There was also some suggestion that K8 was reduced at lower temperatures. At 15 C. Vmax for light and dark uptake for both NH4+ and NO3?, and light uptake of N02? were similar, suggesting comparable potential use at higher concentrations. Ammonium and NO3?uptake decreased at lower temperatures giving Qro values of 1.8 and 1.6, respectively, between 5 and 15°C. Nitrate and NH4+ were taken up together and high levels of NH4+ did not inhibit NO3? uptake. Light did not affect uptake of either but did stimulate NO2? uptake. Ammonium and NO3? uptake were highest in apical frond and whole young plants, and lowest in slower growing, older frond and stipe. On a relative basis. NO3?, NH4+ and NO2? were estimated to have contributed ca. 59, 39 and 2% respectively, to the yearly N uptake by apical frond. During winter, NO3? would provide ca. twice the N to F. spiralis as would, NH4+. From summer to early fall, when NO3? levels are lower, NO3? and NH4+ would be used in comparable amounts.  相似文献   

20.
The “red tide” organism Karenia brevis (Davis) Hansen & Moestrup (=Gymnodinium breve Davis) produces a mixture of brevetoxins, potent neurotoxins responsible for neurotoxic shellfish poisoning in humans and massive fish kills in the Gulf of Mexico and the southern Atlantic coast of the United States. The sterol composition of K. brevis was found to be a mixture of six novel and rare Δ8(14) sterols. The two predominant sterols, (24R)‐4α‐methylergosta‐8(14), 22‐dienol and (24R)‐4α‐methyl‐27‐norergosta‐8(14), 22‐dienol, were named gymnodinosterol and brevesterol and represent potentially useful biomarkers for K. brevis. A possible function for such unusual marine sterols is proposed whereby structural modifications render the sterols non‐nutritious to marine invertebrates, reducing predation and thereby enhancing the ability of the dinoflagellates to form massive blooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号