首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many organs, such as the liver, neural tube, and lung, form by the precise remodeling of flat epithelial sheets into tubes. Here we investigate epithelial tubulogenesis in Drosophila melanogaster by examining the development of the dorsal respiratory appendages of the eggshell. We employ a culture system that permits confocal analysis of stage 10-14 egg chambers. Time-lapse imaging of GFP-Moesin-expressing egg chambers reveals three phases of morphogenesis: tube formation, anterior extension, and paddle maturation. The dorsal-appendage-forming cells, previously thought to represent a single cell fate, consist of two subpopulations, those forming the tube roof and those forming the tube floor. These two cell types exhibit distinct morphological and molecular features. Roof-forming cells constrict apically and express high levels of Broad protein. Floor cells lack Broad, express the rhomboid-lacZ marker, and form the floor by directed cell elongation. We examine the morphogenetic phenotype of the bullwinkle (bwk) mutant and identify defects in both roof and floor formation. Dorsal appendage formation is an excellent system in which cell biological, molecular, and genetic tools facilitate the study of epithelial morphogenesis.  相似文献   

2.
True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co‐culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non‐macromastic epithelial cells when co‐cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia‐derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co‐culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co‐cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy.  相似文献   

3.
4.
Previous studies have demonstrated that cell adhesion systems are downregulated in epithelial buds at the earliest stages of submandibular gland and hair follicle development, but are restored at subsequent stages. Here it is shown that epithelial cell adhesion systems are also remodeled during early mammary gland development. Immunofluorescence and electron microscopy of the mouse mammary bud demonstrated that cell-cell adhesion systems were hardly detectable, with significant downregulation of expression of desmosomal molecules, but not of E-cadherin and beta-catenin. Hemidesmosomal structures were also rarely found, although their component molecules were expressed. Differences in cell adhesivity between cells of the mammary bud and those of the overlying epidermis were shown by the finding that the mammary cells formed smaller aggregates than the epidermal cells and were not randomly mixed with the epidermal cells. At subsequent stages, the mammary epithelium restored cell-cell adhesion systems along with de novo expression of tight junction molecules. These data, together with previous findings, indicate that remodeling of epithelial cell adhesion systems is a general feature underlying the early development of several ectoderm-derived organs and support the idea that segregation and rearrangements of cells are involved in early epithelial morphogenesis.  相似文献   

5.
The Caenorhabditis elegans vulva provides a simple model for the genetic analysis of pattern formation and organ morphogenesis during metazoan development. We have discovered an essential role for the polarity protein PAR-1 in the development of the vulva. Postembryonic RNA interference of PAR-1 causes a protruding vulva phenotype. We found that depleting PAR-1 during the development of the vulva has no detectable effect on fate specification or precursor proliferation, but instead seems to specifically alter morphogenesis. Using an apical junction-associated GFP marker, we discovered that PAR-1 depletion causes a failure of the two mirror-symmetric halves of the vulva to join into a single, coherent organ. The cells that normally form the ventral vulval rings fail to make contact or adhere and consequently form incomplete toroids, and dorsal rings adopt variably abnormal morphologies. We also found that PAR-1 undergoes a redistribution from apical junctions to basolateral domains during morphogenesis. Despite a known role for PAR-1 in cell polarity, we have observed no detectable differences in the distribution of various markers of epithelial cell polarity. We propose that PAR-1 activity at the cell cortex is critical for mediating cell shape changes, cell surface composition, or cell signaling during vulval morphogenesis.  相似文献   

6.
Epithelial tubes of the correct size and shape are vital for the function of the lungs, kidneys, and vascular system, yet little is known about epithelial tube size regulation. Mutations in the Drosophila gene sinuous have previously been shown to cause tracheal tubes to be elongated and have diameter increases. Our genetic analysis using a sinuous null mutation suggests that sinuous functions in the same pathway as the septate junction genes neurexin and scribble, but that nervana 2, convoluted, varicose, and cystic have functions not shared by sinuous. Our molecular analyses reveal that sinuous encodes a claudin that localizes to septate junctions and is required for septate junction organization and paracellular barrier function. These results provide important evidence that the paracellular barriers formed by arthropod septate junctions and vertebrate tight junctions have a common molecular basis despite their otherwise different molecular compositions, morphologies, and subcellular localizations.  相似文献   

7.
In the cranial vault, suture morphogenesis occurs when the growing cranial bones approximate and overlap or abut one another. Patency of developing sutures is regulated by the underlying dura mater. Once cranial sutures form, bone growth proceeds from the sutures in response to growth signals from the rapidly expanding neurocranium. Facial sutures do not develop in contact with the dura mater. It was therefore hypothesized that facial suture morphogenesis and bone growth from facial sutures are regulated by tissues with an equivalent role to the dura mater. The present study was designed to test this hypothesis by characterizing the morphology and growth factor expression in developing transpalatal (TP) sutures and their surrounding tissues, and then assessing the role of the overlying nasal capsular (NC) cartilages in maintaining suture patency. TP sutures develop as overlapping sutures, similar to cranial coronal sutures, and expression of Tgf-betas in TP sutures was similar to their distribution in cranial coronal sutures. To establish whether NC cartilages play a role in regulating TP suture morphogenesis, fetal rat TP sutures were cultured with associated attached NC cartilages or with NC cartilages removed. Sutures cultured for upward of 5 days with intact NC cartilages remained patent and maintained their cellular and fibrous components. However, in the absence of NC cartilages, the cellular nature of the sutures was not maintained and they became progressively acellular, with bony bridging across the suture. This finding is similar to that for cranial vault sutures cultured in the absence of dura mater, indicating that NC cartilages play an equivalent role to dura mater in maintaining the patency of developing sutures. These studies indicate that tissue interactions likely regulate morphogenesis of all cranial and facial sutures.  相似文献   

8.
9.
10.
11.
Wound healing in embryos and various developmental events in metazoans require the spreading and fusion of epithelial sheets. The complex signaling pathways regulating these processes are being pieced together through genetic, cell biological, and biochemical approaches. At present, dorsal closure of the Drosophila embryo is the best-characterized example of epithelial sheet movement. Dorsal closure involves migration of the lateral epidermal flanks to close a hole in the dorsal epidermis occupied by an epithelium called the amnioserosa. Detailed genetic studies have revealed a network of interacting signaling molecules regulating this process. At the center of this network is a Jun N-terminal kinase cascade acting at the leading edge of the migrating epidermis that triggers signaling by the TGF-beta superfamily member Decapentaplegic and which interacts with the Wingless pathway. These signaling modules regulate the cytoskeletal reorganization and cell shape change necessary to drive dorsal closure. Activation of this network requires signals from the amnioserosa and input from a variety of proteins at cell-cell junctions. The Rho family of small GTPases is also instrumental, both in activation of signaling and regulation of the cytoskeleton. Many of the proteins regulating dorsal closure have been implicated in epithelial movement in other organisms, and dorsal closure has emerged as an ideal model system for the study of the migration and fusion of epithelial sheets.  相似文献   

12.
Androgens induce rat prostate induction from the urogenital sinus epithelium at embryonic day 17.5. Subsequent morphogenesis, including epithelial cord growth, branching, and canalization, results from concerted paracrine interactions with the stroma. A significant number of paracrine factors bind heparan sulfate (HS). We hypothesized that interfering with overall sulfation could disrupt the signaling mediated by HS-binding factors and that the undersulfated environment would allow investigation of individual exogenous morphogens. First, we investigated whether acinar morphogenesis involved HS-proteoglycan expression and found that syndecans 1 and 3 were upregulated in RWPE1 cells in the transition from two- to three-dimensional (3D) Matrigel, capable of promoting spheroid formation. We then investigated whether sodium chlorate, a general sulfation inhibitor, interfered with spheroid formation by RWPE1 cells and acinar morphogenesis in ex vivo ventral prostate (VP) organ culture. As expected, treatment with sodium chlorate inhibited spheroid formation by RWPE1 cells in 3D culture. Chlorate also inhibited ex vivo VP epithelial branching and canalization, resulting in long branchless epithelial structures. We then investigated whether the HS-binding factors, FGF10, TGFβ1, and SDF1, could reverse the effect of sodium chlorate. Although no effect was seen in the FGF10- and TGFβ1-treated samples, SDF1 promoted epithelial canalization in the low sulfated environment, highlighting its specific role in lumen formation. Altogether, the results show that sodium chlorate perturbed prostate morphogenesis and allowed investigation of factors involved in branching and/or canalization, implicating SDF1 signaling in epithelial canalization.  相似文献   

13.
The creation of cellular tubes is one of the most vital developmental processes, resulting in the formation of most organ types. Cells have co‐opted a number of different mechanisms for tube morphogenesis that vary among tissues and organisms; however, generation and maintenance of cell polarity is fundamental for successful lumenogenesis. Polarized membrane transport has emerged as a key driver not only for establishing individual epithelial cell polarity, but also for coordination of epithelial polarization during apical lumen formation and tissue morphogenesis. In recent years, much work has been dedicated to identifying membrane trafficking regulators required for lumenogenesis. In this review we will summarize the findings from the past couple of decades in defining the molecular machinery governing lumenogenesis both in 3D tissue culture models and during organ development in vivo.   相似文献   

14.
The primary lung bud originates from the foregut and develops into the bronchial tree by repetitive branching and outgrowing of the airway. The Sry related HMG box protein Sox2 is expressed in a cyclic manner during initiation and branching morphogenesis of the lung. It is highly expressed in non-branching regions and absent from branching regions, suggesting that downregulation of Sox2 is mandatory for airway epithelium to respond to branch inducing signals. Therefore, we developed transgenic mice that express a doxycycline inducible Sox2 in the airway epithelium. Continuous expression of Sox2 hampers the branching process resulting in a severe reduction of the number of airways. In addition, the bronchioli transiently go over into enlarged, alveolar-like airspaces, a pathology described as bronchiolization of alveoli. Furthermore, a substantial increase was observed of cGRP positive neuroendocrine cells and ΔNp63 isoform expressing (pre-) basal cells, which are both committed precursor-like cells. Thus, Sox2 prevents airways from branching and prematurely drives cells into committed progenitors, apparently rendering these committed progenitors unresponsive to branch inducing signals. However, Sox2 overexpression does not lead to a complete abrogation of the epithelial differentiation program.  相似文献   

15.
Inner ear develops from an induced surface ectoderm placode that invaginates and closes to form the otic vesicle, which then undergoes a complex morphogenetic process to form the membranous labyrinth. Inner ear morphogenesis is severely affected in Gata3 deficient mouse embryos, but the onset and basis of the phenotype has not been known. We show here that Gata3 deficiency leads to severe and unique abnormalities during otic placode invagination. The invagination problems are accompanied often by the formation of a morphological boundary between the dorsal and ventral otic cup and by the precocious appearance of dorsal endolymphatic characteristics. In addition, the endolymphatic domain often detaches from the rest of the otic epithelium during epithelial closure. The expression of several cell adhesion mediating genes is altered in Gata3 deficient ears suggesting that Gata3 controls adhesion and morphogenetic movements in early otic epithelium. Inactivation of Gata3 leads also to a loss of Fgf10 expression in otic epithelium and auditory ganglion demonstrating that Gata3 is an important regulator of Fgf-signalling during otic development.  相似文献   

16.
17.
Summary A molecular marker has been identified in embryos of the cockroach, Periplaneta americana, that is localized among epithelial cells to those directly involved in morphogenesis. A monoclonal antibody has been developed that selectively binds to epithelial cells undergoing any of three very different morphogenetic movements-invagination, evagination or epiboly. Neighboring cells not involved in these developmental processes are not labeled by the antibody. The antigen is transiently present on the cells for a period just prior to and during the morphogenetic activity. It is localized on the apical surface of the cells. The spatial, temporal and subcellular distributions of antibody binding during development indicate a role for the antigen in epithelial morphogenesis different from that of any previously described molecule.  相似文献   

18.
Changes in cell shape and position drive morphogenesis in epithelia and depend on the polarized nature of its constituent cells. The spectrin-based membrane skeleton is thought to be a key player in the establishment and/or maintenance of cell shape and polarity. We report that apical beta(Heavy)-spectrin (beta(H)), a terminal web protein that is also associated with the zonula adherens, is essential for normal epithelial morphogenesis of the Drosophila follicle cell epithelium during oogenesis. Elimination of beta(H) by the karst mutation prevents apical constriction of the follicle cells during mid-oogenesis, and is accompanied by a gross breakup of the zonula adherens. We also report that the integrity of the migratory border cell cluster, a group of anterior follicle cells that delaminates from the follicle epithelium, is disrupted. Elimination of beta(H) prevents the stable recruitment of alpha-spectrin to the apical domain, but does not result in a loss of apicobasal polarity, as would be predicted from current models describing the role of spectrin in the establishment of cell polarity. These results demonstrate a direct role for apical (alphabeta(H))(2)-spectrin in epithelial morphogenesis driven by apical contraction, and suggest that apical and basolateral spectrin do not play identical roles in the generation of apicobasal polarity.  相似文献   

19.
20.
The salivary epithelium initiates as a solid mass of epithelial cells that are organized into a primary bud that undergoes morphogenesis and differentiation to yield bilayered acini consisting of interior secretory acinar cells that are surrounded by contractile myoepithelial cells in mature salivary glands. How the primary bud transitions into acini has not been previously documented. We document here that the outer epithelial cells subsequently undergo a vertical compression as they express smooth muscle α-actin and differentiate into myoepithelial cells. The outermost layer of polarized epithelial cells assemble and organize the basal deposition of basement membrane, which requires basal positioning of the polarity protein, Par-1b. Whether Par-1b is required for the vertical compression and differentiation of the myoepithelial cells is unknown. Following manipulation of Par-1b in salivary gland organ explants, Par-1b-inhibited explants showed both a reduced vertical compression of differentiating myoepithelial cells and reduced levels of smooth muscle α-actin. Rac1 knockdown and inhibition of Rac GTPase function also inhibited branching morphogenesis. Since Rac regulates cellular morphology, we investigated a contribution for Rac in myoepithelial cell differentiation. Inhibition of Rac GTPase activity showed a similar reduction in vertical compression and smooth muscle α-actin levels while decreasing the levels of Par-1b protein and altering its basal localization in the outer cells. Inhibition of ROCK, which is required for basal positioning of Par-1b, resulted in mislocalization of Par-1b and loss of vertical cellular compression, but did not significantly alter levels of smooth muscle α-actin in these cells. Overexpression of Par-1b in the presence of Rac inhibition restored basement membrane protein levels and localization. Our results indicate that the basal localization of Par-1b in the outer epithelial cells is required for myoepithelial cell compression, and Par-1b is required for myoepithelial differentiation, regardless of its localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号