首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We characterized Xenopus laevis C-C motif chemokine ligand 19.L (ccl19.L) and C-C motif chemokine ligand 21.L (ccl21.L) during early Xenopus embryogenesis. The temporal and spatial expression patterns of ccl19.L and ccl21.L tended to show an inverse correlation, except that the expression level was higher in the dorsal side at the gastrula stage. For example, even at the dorsal sector of the gastrulae, ccl19.L was expressed in the axial region and ccl21.L was expressed in the paraxial region. Dorsal overexpression of ccl19.L and ccl21.L and knockdown of Ccl19.L and Ccl21.L inhibited gastrulation, but their functions were different in cell behaviors during morphogenesis. Observation of Keller sandwich explants revealed that overexpression of both ccl19.L and ccl21.L and knockdown of Ccl21.L inhibited the convergent extension movements, while knockdown of Ccl19.L did not. ccl19.L-overexpressing explants attracted cells at a distance and ccl21.L-overexpressing explants attracted neighboring cells. Ventral overexpression of ccl19.L and ccl21.L induced secondary axis-like structures and chrd.1 expression at the ventral side. Upregulation of chrd.1 was induced by ligand mRNAs through ccr7.S. Knockdown of Ccl19.L and Ccl21.L inhibited gastrulation and downregulated chrd.1 expression at the dorsal side. The collective findings indicate that ccl19.L and ccl21.L might play important roles in morphogenesis and dorsal–ventral patterning during early embryogenesis in Xenopus.  相似文献   

3.
Changes in the amount of mitochondrial DNA (mtDNA) have never been investigated in plant zygotes or early plant embryos due to the difficulty in isolating these cells, although such changes have been investigated in mammalian embryos. Using the single‐cell quantitative real‐time polymerase chain reaction (PCR) and laser confocal microscopy, we surveyed the changes in mtDNA levels during early embryogenesis in Torenia fournieri and Arabidopsis thaliana. In contrast with the amount of mtDNA in early mammalian embryos, which does not change, we found that mtDNA doubling occurred during zygotic development in T. fournieri and during two‐cell proembryo development in A. thaliana. These findings reveal that mtDNA doubling occurs during early embryogenesis in T. fournieri and A. thaliana, indicating that the dynamics of mtDNA in early plant embryos differs from that in early mammalian embryos.  相似文献   

4.
POU‐V class proteins like Oct4 are crucial for keeping cells in an undifferentiated state. An Oct4 homologue in Xenopus laevis, Oct25, peaks in expression during early gastrulation, when many cells are still uncommitted. Nevertheless, extensive morphogenesis is taking place in all germ layers at that time. Phenotypical analysis of embryos with Oct25 overexpression revealed morphogenesis defects, beginning during early gastrulation and resulting in spina‐bifida‐like axial defects. Analysis of marker genes and different morphogenesis assays show inhibitory effects on convergence and extension and on mesoderm internalization. On a cellular level, cell–cell adhesion is reduced. On a molecular level, Oct25 overexpression activates expression of PAPC, a functional inhibitor of the cell adhesion molecule EP/C‐cadherin. Intriguingly, Oct25 effects on cell–cell adhesion can be restored by overexpression of EP/C‐cadherin or by inhibition of the PAPC function. Thus, Oct25 affects morphogenesis via activation of PAPC expression and subsequent functional inhibition of EP/C‐cadherin.  相似文献   

5.
6.
Time-lapse cinemicrography was used to show what changes in the number, size, shape, arrangement and what movements of apices of superficial cells occur during epiboly, extension, convergence and blastopore formation in the blastula or gastrula of Xenopus laevis. Epiboly of the animal region occurs by apical expansion of superficial cells at a nearly constant rate from the midblastula to the midgastrula stage. Egression of deep cells into the superficial layer does not occur. Extension of the dorsal marginal zone begins in the late blastula stage with the rapid spreading of the apices of cells in this region and this continues until the onset of neurulation when rapid shrinkage begins. Extension and convergence of the dorsal marginal zone occurs by a rearrangement in which individual cells exchange neighbors and by a change in the shape of the cell apices. Regional differences in apical expansion are accompanied by differences in rate of anticlinal division of superficial cells such that cells in all sectors of the animal region and the marginal zone show similar patterns of decrease in apparent apical area. Shrinkage of the apices of bottle cells during blastopore formation is described. From this and other studies, a model of the cellular behavior of epiboly, extension and convergence is constructed and several hypotheses as to how these activities might generate the mechanical forces of the gastrulation movements are presented.  相似文献   

7.
Collective and directed cell movements are crucial for diverse developmental processes in the animal kingdom, but they are also involved in wound repair and disease. During these processes groups of cells are oriented within the tissue plane, which is referred to as planar cell polarity (PCP). This requires a tight regulation that is in part conducted by the PCP pathway. Although this pathway was initially characterized in flies, subsequent studies in vertebrates revealed a set of conserved core factors but also effector molecules and signal modulators, which build the fundamental PCP machinery. The PCP pathway in Drosophila regulates several developmental processes involving collective cell movements such as border cell migration during oogenesis, ommatidial rotation during eye development, and embryonic dorsal closure. During vertebrate embryogenesis, PCP signaling also controls collective and directed cell movements including convergent extension during gastrulation, neural tube closure, neural crest cell migration, or heart morphogenesis. Similarly, PCP signaling is linked to processes such as wound repair, and cancer invasion and metastasis in adults. As a consequence, disruption of PCP signaling leads to pathological conditions. In this review, we will summarize recent findings about the role of PCP signaling in collective cell movements in flies and vertebrates. In addition, we will focus on how studies in Drosophila have been relevant to our understanding of the PCP molecular machinery and will describe several developmental defects and human disorders in which PCP signaling is compromised. Therefore, new discoveries about the contribution of this pathway to collective cell movements could provide new potential diagnostic and therapeutic targets for these disorders.  相似文献   

8.
The Down syndrome cell adhesion molecule (DSCAM) is an Ig containing cell adhesion molecule with remarkable structural conservation throughout metazoans. In insects, DSCAM has 38,000 potential isoforms that convey axon guidance, fasciculation, and dendrite morphogenesis during neurodevelopment. In vertebrates, DSCAM is expressed throughout the nervous system and seems to also mediate proper axonal guidance and synaptogenesis without the isoform diversity found in insects. Differences in DSCAM function among several vertebrate species complicate the understanding of an evolutionarily conserved role during embryogenesis. We take advantage of the frog developmental model Xenopus tropicalis to study DSCAM function in early development by expression analysis and morpholino‐mediated knockdown. Our results indicate that DSCAM is expressed early in development and restricted to the head and nervous system. Knockdown of protein expression results in early morphogenetic phenotypes characterized by failed gastrulation and improper posterior neural tube closure. Our results reveal a specific, fundamental role of DSCAM in early morphogenetic movements, presumably through its well‐known role in homophilic cell adhesion. genesis 52:849–857, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
10.
  • In the generally bee‐pollinated genus Lotus a group of four species have evolved bird‐pollinated flowers. The floral changes in these species include altered petal orientation, shape and texture. In Lotus these characters are associated with dorsiventral petal identity, suggesting that shifts in the expression of dorsal identity genes may be involved in the evolution of bird pollination. Of particular interest is Lotus japonicus CYCLOIDEA 2 (LjCYC2), known to determine the presence of papillate conical cells on the dorsal petal in L. japonicus. Bird‐pollinated species are unusual in not having papillate conical cells on the dorsal petal.
  • Using RT‐PCR at various stages of flower development, we determined the timing of expression in all petal types for the three putative petal identity genes (CYC‐like genes) in different species with contrasting floral morphology and pollination syndromes.
  • In bird‐pollinated species the dorsal identity gene, LjCYC2, is not expressed at the floral stage when papillate conical cells are normally differentiating in bee‐pollinated species. In contrast, in bee‐pollinated species, LjCYC2 is expressed during conical cell development.
  • Changes in the timing of expression of the above two genes are associated with modifications in petal growth and lateralisation of the dorsal and ventral petals in the bird‐pollinated species. This study indicates that changes in the timing, rather than spatial distribution, of expression likely contribute to the modifications of petal micromorphology and petal size during the transition from bee to bird pollination in Macaronesian Lotus species.
  相似文献   

11.
Chemokines are small secreted signalling molecules best known for their roles as chemoattractants for cells of the immune system. CXCL12 and its receptor CXCR4 comprise one chemokine signalling pathway with essential functions in non-immune cell types during embryonic development. CXCL14, a chemokine-encoding gene related to CXCL12, is developmentally regulated in zebrafish and Xenopus embryos, but its role during embryogenesis remains unknown. Here we describe the embryonic expression pattern of CXCL14 in an amniote, the chick. Although expression in some regions is conserved with that of fish and frog, chick CXCL14 displays a complex pattern of expression in several novel sites. We analyse the expression pattern in the branchial arches, trigeminal placode and ganglion, inner ear, dorsal midline of the brain, somites, trunk neural tube and limb bud. Expression in several domains raises the possibility that CXCL14 may be involved in some of the same developmental events during which CXCL12-CXCR4 signalling is known to play a role.  相似文献   

12.
Paraxial protocadherin (PAPC) has been shown to be involved in gastrulation cell movements during early embryogenesis. It is first expressed in the dorsal marginal zone at the early gastrula stage and subsequently restricted to the paraxial mesoderm in Xenopus and zebrafish. Using Xenopus embryos, we found that PAPC is also regulated at the protein level and is degraded and excluded from the plasma membrane in the axial mesoderm by the late gastrula stage. Regulation of PAPC requires poly-ubiquitination that is dependent on phosphorylation. PAPC is phosphorylated by GKS3 in the evolutionarily conserved cytoplasmic domain, and this in turn is necessary for poly-ubiquitination by an E3 ubiquitin ligase β-TrCP. We also show that precise control of PAPC by phosphorylation/ubiquitination is essential for normal Xenopus gastrulation cell movements. Taken together, our findings unveil a novel mechanism of regulation of a cell adhesion protein and show that this system plays a crucial role in vertebrate embryogenesis.  相似文献   

13.
Wnt proteins are thought to bind to their receptors on the cell surfaces of neighboring cells. Wnt8 likely substitutes for the dorsal determinants in Xenopus embryos to dorsalize early embryos via the Wnt/β‐catenin pathway. Here, we show that Wnt8 can dorsalize Xenopus embryos working cell autonomously. Wnt8 mRNA was injected into a cleavage‐stage blastomere, and the subcellular distribution of Wnt8 protein was analyzed. Wnt8 protein was predominantly found in the endoplasmic reticulum (ER) and resided at the periphery of the cells; however, this protein was restricted to the mRNA‐injected cellular region as shown by lineage tracing. A mutant Wnt8 that contained an ER retention signal (Wnt8‐KDEL) could dorsalize Xenopus embryos. Finally, Wnt8‐induced dorsalization occurred only in cells injected with Wnt8 mRNA. These experiments suggest that the Wnt8 protein acts within the cell, likely in the ER or on the cell surface in an autocrine manner for dorsalization.  相似文献   

14.
15.
The relatively consistent fates of the blastomeres of the frog embryo could result from (i) predetermination of the blastomeres or (ii) reproducible morphogenetic cell movements. In some species, the mixing of the cells during development provides a test between these alternative hypotheses. If blastomeres are predetermined, then random intermixing of the descendants with neighboring cells could not alter their fate. To follow cell mixing during Xenopus development, fluorescent dextran lineage tracers were microinjected into identified blastomeres at the 16-cell stage. The labelled descendants of the injected blastomeres were followed over several stages of embryogenesis. After gastrulation, the labelled descendants formed relatively coherent groups in characteristic regions of the embryo. By larval stages, most of the labelled descendants were still located in characteristic regions. However, coherence was less pronounced and individual descendants were located in many regions of the embryo. Hence, cell mixing is a slow, but progressive, process throughout Xenopus development. This is in sharp contrast to the extensive mixing that occurs during the early development of other vertebrates, such as zebrafish and mice. The slow cell mixing in Xenopus development suggests a simple mechanism for the consistent fates of cleavage-stage blastomeres. The stereotyped cell movements of embryogenesis redistribute the largely coherent descendants to characteristic locations in the embryo. The small amount of mixing that does occur would result in variable locations of a small proportion of the descendants; this could contribute to the observed variability of the blastomere fate map. Because cell mixing during Xenopus development is insufficient to challenge possible lineage restrictions, additional experiments must be performed to establish when and if lineage restrictions occur.  相似文献   

16.
Abstract. The timing and spatial distribution of cells containing FMRFamide-related molecules in the embryogenesis of the polychaete Ophryotrocha labronica were studied immunocytochemically. FMRFamide-like molecules emerge early during embryonic development. They are found at the one-cell stage, are asymmetrically distributed in the first phases of cleavage, associated with gastrular movements, and label the central nervous system morphogenesis. Moreover, during embryogenesis, the pattern of gut cells with the FMRFamide-like phenotype that is present in adults is already established. The early occurrence of FMRFamide-like molecules in O. labronica suggests that these molecules are involved as pre-nervous growth signals in the regulation of basic neuronal cell behaviors.  相似文献   

17.
As the start of a new life cycle, activation of the first division of the zygote is a critical event in both plants and animals. Because the zygote in plants is difficult to access, our understanding of how this process is achieved remains poor. Here we report genetic and cell biological analyses of the zygote‐arrest 1 (zyg1) mutant in Arabidopsis, which showed zygote‐lethal and over‐accumulation of cyclin B1 D‐box‐GUS in ovules. Map‐based cloning showed that ZYG1 encodes the anaphase‐promoting complex/cyclosome (APC/C) subunit 11 (APC11). Live‐cell imaging studies showed that APC11 is expressed in both egg and sperm cells, in zygotes and during early embryogenesis. Using a GFP‐APC11 fusion construct that fully complements zyg1, we showed that GFP‐APC11 expression persisted throughout the mitotic cell cycle, and localized to cell plates during cytokinesis. Expression of non‐degradable cyclin B1 in the zygote, or mutations of either APC1 or APC4, also led to a zyg1‐like phenotype. Biochemical studies showed that APC11 has self‐ubiquitination activity and is able to ubiquitinate cyclin B1 and promote degradation of cyclin B1. These results together suggest that APC/C‐mediated degradation of cyclin B1 in Arabidopsis is critical for initiating the first division of the zygote.  相似文献   

18.
Summary We have raised antiserum against part of the Deformed (Dfd) protein of the honeybee and describe here the expression pattern of the Dfd protein during honeybee embryogenesis. Dfd protein is first stained in the prospective gnathal region of the cellular blastoderm. This circumferential band corresponds to the distribution of Dfd mRNA described earlier, and to the blastodermal Dfd expression pattern in Drosophila. Using an antibody against the engrailed (en) protein of Drosophila, we found that at the beginning of gastrulation Dfd expression in the honeybee, as in Drosophila, is restricted to the future intercalary, mandibular and maxillary segments. During gastrulation, the mesodermal nuclei loose the Dfd label gradually from anterior to posterior, and in the ectoderm the most posterior ventral cells loose Dfd while retaining en staining; thus, in contrast to what has been described for Drosophila, the posterior Dfd expression border seems to move forward ventrally to the parasegmental boundary within the maxillary segment. In the late germ band, the lateral tips of the Dfd-expressing band are connected across the dorsal side by a row of amnion cells with strongly staining large nuclei. After dorsal closure, a narrow stripe of Dfd-staining dorsal cells behind the neck region may indicate that the maxillary segment contributes to the dorsal body wall posterior to the head capsule. Thus, apart from some minor deviations, the Dfd expression pattern in the honeybee strongly resembles that in Drosophila prior to head involution. This is compatible with the assumption that head involution (which is a special adaption in higher dipterans) ensues after a rather conserved course of early head development in which Dfd appears to play a basic role. Offprint requests to: R. Fleig  相似文献   

19.
Gastrulation movements are critical for establishing the three germ layers and the architecture of vertebrate embryos. During Xenopus laevis gastrulation, mesodermal tissue migrates on the blastocoel roof and elongates along the antero-posterior axis. During this process, cells in the dorsal mesoderm are polarized and intercalate with each other, which is defined as convergent extension and is known to be regulated by the non-canonical Wnt pathway. Here, we show that paxillin plays an essential role in this process. Paxillin is a focal-adhesion associated protein implicated in the regulation of actin cytoskeletal organization and cell motility, but its role in Xenopus embryogenesis has not yet been clarified. We demonstrate that the Wnt pathway controls the ubiquitination and stability of paxillin, and that this regulatory mechanism is essential for convergent extension movements. We identified a RING finger protein XRNF185, which physically binds to paxillin and the proteasome. XRNF185 destabilizes paxillin at focal adhesions and promotes mesodermal cell migration during convergent extension. We propose a mechanism to regulate gastrulation movements that involves paxillin ubiquitination and stability controlled by Wnt signalling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号