首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Two types of Pseudomonas putida PpG2 mutants which were unable to degrade branched-chain amino acids were isolated after mutagenesis and selection for ability to grow on succinate, but not valine, as a sole source of carbon. These isolates were characterized by growth on the three branched-chain amino acids (valine, isoleucine, and leucine), on the corresponding branched-chain keto acids (2-ketoisovalerate, 2-keto-3-methylvalerate, and 2-ketoisocaproate), and on other selected intermediates as carbon sources, and by their enzymatic composition. One group of mutants lost 2-ketoisovalerate-inducible branched-chain keto acid dehydrogenase that was active on all three keto acids. There was also a concomitant loss of ability to grow on all three branched-chain amino acids as well as on all three corresponding keto acids, but there was retention of ability to use subsequent intermediates in the catabolism of branched-chain amino acids. Another type of mutant showed a marked reduction in branched-chain amino acid transaminase activity and grew poorly at the expense of all three amino acids, but it utilized subsequent intermediates as carbon sources. Both the transaminase and branched-chain keto acid dehydrogenase mutants retained the ability to degrade camphor. These findings are consistent with the view that branched-chain amino acid transaminase and branched-chain keto acid dehydrogenase are common enzymes in the catabolism of valine, isoleucine, and leucine.  相似文献   

2.
In a strain of Escherichia coli K-12 lacking threonine deaminase, the enzyme converting alpha-ketoisovalerate and alpha-keto-beta-methylvalerate to valine and isoleucine, respectively, was multivalently repressed by valine, isoleucine, and leucine. This activity was due to transaminase B, specified by the ilvE structural gene.  相似文献   

3.
The regulation of the formation of isoleucine-valine biosynthetic enzymes was examined to elucidate the mechanism of isoleucine-valine accumulation by alpha-aminobutyric acid-resistant (abu-r) mutants of Serratia marcescens. In the isoleucine-valine auxotroph, l-threonine dehydratase, acetohydroxy acid synthetase, and transaminase B were repressed when isoleucine, valine, and leucine were simultaneously added to minimal medium. These enzymes were derepressed at the limitation of any single branched-chain amino acid. Pantothenate, which stimulated growth of this auxotroph, had no effect on the enzyme levels. It became evident from these results that in S. marcescens isoleucine-valine biosynthetic enzymes are subject to multivalent repression by three branched-chain amino acids. The abu-r mutants had high enzyme levels in minimal medium, with or without three branched-chain amino acids. Therefore, in abu-r mutants, isoleucine-valine biosynthetic enzymes are genetically derepressed. This derepression was considered to be the primary cause for valine accumulation and increased isoleucine accumulation.  相似文献   

4.
Isolation of mutants lacking branched-chain amino acid transaminase.   总被引:1,自引:0,他引:1  
Variants of the Chinese hamster ovary cell have been isolated which can no longer grow when valine, leucine, or isoleucine is replaced in the culture medium by its respective alpha-keto acid: alpha-ketoisovaleric acid, alpha-ketoisocaproic acid, or alpha-keto-beta-methylvaleric acid. These variants lack branched-chain amino acid transaminase activity. Evidence is presented indicating these variants to be single gene mutants. Genetic evidence is also presented confirming previous biochemical evidence that a single enzyme carries out transaminase functions on valine, leucine, and isoleucine. The branched-chain transaminase-deficient (trans-) mutants can be reverted to wild-type behavior by treatment with mutagenic agents. These mutants promise to be useful in exploring regulatory mechanisms in biochemical, genetic, and cancer research.  相似文献   

5.
Regulation of isoleucine, valine, and leucine biosynthesis and isoleucyl-, valyl-, and leucyl-transfer ribonucleic acid (tRNA) synthetase formation was examined in two mutant strains of Escherichia coli. One mutant was selected for growth resistance to the isoleucine analogue, ketomycin, and the other was selected for growth resistance to both trifluoroleucine and valine. Control of the synthesis of the branched-chain amino acids by repression was altered in both of these mutants. They also exhibited altered control of formation of isoleucyl-tRNA synthetase (EC 6.1.15, isoleucine:sRNA ligase, AMP), valyl-tRNA synthetase (EC 6.1.1.9, valine:sRNA ligase, AMP), and leucyl-tRNA synthetase (EC 6.1.1.4, leucine:sRNA ligase, AMP). These results suggest the existence of a common element for the control of these two classes of enzymes in Escherichia coli.  相似文献   

6.
Cysteine has been shown to inhibit growth in Escherichia coli strains C6 and HfrH 72, but not M108A. Growth inhibition was overcome by inclusion of isoleucine, leucine, and valine in the medium. Isoleucine biosynthesis was apparently affected, since addition of this amino acid alone could alter the inhibitory effects of cysteine. Homocysteine, mercaptoethylamine, and mercaptoethanol inhibited growth to varying degrees in some strains, these effects also being prevented by addition of branched-chain amino acids. Cysteine, mercaptoethylamine, and homocysteine were inhibitors of threonine deaminase but not transaminase B, two enzymes of the ilvEDA operon. Cysteine inhibition of threonine deaminase was reversed by threonine, although the pattern of inhibition was mixed. These results suggest a relationship between the growth-inhibitory effects of cysteine and other sulfur compounds and the inhibition of isoleucine synthesis at the level of threonine deaminase.  相似文献   

7.
8.
Escherichia coli can synthesize alpha-ketoisovalerate, the precursor of valine, leucine, and pantothenate, by three routes: anabolically via dihydroxyacid dehydrase and catabolically via both the branched-chain amino acid transaminase (transaminase B) and the alanine-valine transaminase (transaminase C). An E. coli K-12 mutant devoid of transaminase C (avtA) was isolated by mutagenizing an isoleucine-requiring strain devoid of transaminase B (ilvE::Tn5) with Mu d1(Ap lac) and selecting for valine-requiring derivatives which were ampicillin resistant, Lac+, able to crossfeed an ilvD mutant, and unable to grow on alpha-ketoisovalerate in place of valine. Strains defective in one, two, or all three alpha-ketoisovalerate metabolic enzymes were constructed, and their properties were analyzed. The data indicated that avtA is the structural gene for transaminase C, that transaminase C is a single enzyme species, and that the sole pathway for pantothenate biosynthesis is from alpha-ketoisovalerate. The data further showed that isoelectric inhibits the transaminase B-catalyzed deamination of valine in vivo.  相似文献   

9.
10.
The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the alpha-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains.  相似文献   

11.
Some Sinorhizobium meliloti mutants in genes involved in isoleucine, valine, and leucine biosynthesis were previously described as being unable to induce nodule formation on host plants. Here, we present a reappraisal of the interconnection between the branched-chain amino acid biosynthesis pathway and the nodulation process in S. meliloti. We characterized the symbiotic phenotype of seven mutants that are auxotrophic for isoleucine, valine, or leucine in two closely related S. meliloti strains, 1021 and 2011. We showed that all mutants were similarly impaired for nodulation and infection of the Medicago sativa host plant. In most cases, the nodulation phenotype was fully restored by the addition of the missing amino acids to the plant growth medium. This strongly suggests that auxotrophy is the cause of the nodulation defect of these mutants. However, we confirmed previous findings that ilvC and ilvD2 mutants in the S. meliloti 1021 genetic background could not be restored to nodulation by supplementation with exogenous amino acids even though their Nod factor production appeared to be normal.  相似文献   

12.
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Kmr). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum ΔilvA ΔpanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions.  相似文献   

13.
14.
Regulation of valine catabolism in Pseudomonas putida   总被引:12,自引:10,他引:2       下载免费PDF全文
The activities of six enzymes which take part in the oxidation of valine by Pseudomonas putida were measured under various conditions of growth. The formation of four of the six enzymes was induced by growth on d- or l-valine: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-hydroxyisobutyrate dehydrogenase, and methylmalonate semialdehyde dehydrogenase. Branched-chain amino acid transaminase and isobutyryl-CoA dehydrogenase were synthesized constitutively. d-Amino acid dehydrogenase and branched-chain keto acid dehydrogenase were induced during growth on valine, leucine, and isoleucine, and these enzymes were assumed to be common to the metabolism of all three branched-chain amino acids. The segment of the pathway required for oxidation of isobutyrate was induced by growth on isobutyrate or 3-hydroxyisobutyrate without formation of the preceding enzymes. d-Amino acid dehydrogenase was induced by growth on l-alanine without formation of other enzymes required for the catabolism of valine. d-Valine was a more effective inducer of d-amino acid dehydrogenase than was l-valine. Therefore, the valine catabolic pathway was induced in three separate segments: (i) d-amino acid dehydrogenase, (ii) branched-chain keto acid dehydrogenase, and (iii) 3-hydroxyisobutyrate dehydrogenase plus methylmalonate semialdehyde dehydrogenase. In a study of the kinetics of formation of the inducible enzymes, it was found that 3-hydroxyisobutyrate and methylmalonate semialdehyde dehydrogenases were coordinately induced. Induction of enzymes of the valine catabolic pathway was studied in a mutant that had lost the ability to grow on all three branched-chain amino acids. Strain PpM2106 had lowered levels of branched-chain amino acid transaminase and completely lacked branched-chain keto acid dehydrogenase when grown in medium which contained valine. Addition of 2-ketoisovalerate, 2-ketoisocaproate, or 2-keto-3-methylvalerate to the growth medium of strain PpM2106 resulted in induction of normal levels of branched-chain keto acid dehydrogenase; therefore, the branched-chain keto acids were the actual inducers of branched-chain keto acid dehydrogenase.  相似文献   

15.
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Km(r)). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum DeltailvA DeltapanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions.  相似文献   

16.
Regulation of branched-chain amino acid transport in Escherichia coli.   总被引:16,自引:14,他引:2       下载免费PDF全文
The repression and derepression of leucine, isoleucine, and valine transport in Escherichia coli K-12 was examined by using strains auxotrophic for leucine, isoleucine, valine, and methionine. In experiments designed to limit each of these amino acids separately, we demonstrate that leucine limitation alone derepressed the leucine-binding protein, the high-affinity branched-chain amino acid transport system (LIV-I), and the membrane-bound, low-affinity system (LIV-II). This regulation did not seem to involve inactivation of transport components, but represented an increase in the differential rate of synthesis of transport components relative to total cellular proteins. The apparent regulation of transport by isoleucine, valine, and methionine reported elsewhere was shown to require an intact leucine, biosynthetic operon and to result from changes in the level of leucine biosynthetic enzymes. A functional leucyl-transfer ribonucleic acid synthetase was also required for repression of transport. Transport regulation was shown to be essentially independent of ilvA or its gene product, threonine deaminase. The central role of leucine or its derivatives in cellular metabolism in general is discussed.  相似文献   

17.
18.
Since both transport activity and the leucine biosynthetic enzymes are repressed by growth on leucine, the regulation of leucine, isoleucine, and valine biosynthetic enzymes was examined in Escherichia coli K-12 strain EO312, a constitutively derepressed branched-chain amino acid transport mutant, to determine if the transport derepression affected the biosynthetic enzymes. Neither the iluB gene product, acetohydroxy acid synthetase (acetolactate synthetase, EC 4.1.3.18), NOR THE LEUB gene product, 3-isopropylmalate dehydrogenase (2-hydroxy-4-methyl-3-carboxyvalerate-nicotinamide adenine dinucleotide oxido-reductase, EC 1.1.1.85), were significantly affected in their level of derepression or repression compared to the parental strain. A number of strains with alterations in the regulation of the branched-chain amino acid biosynthetic enzymes were examined for the regulation of the shock-sensitive transport system for these amino acids (LIV-I). When transport activity was examined in strains with mutations leading to derepression of the iluB, iluADE, and leuABCD gene clusters, the regulation of the LIV-I transport system was found to be normal. The regulation of transport in an E. coli strain B/r with a deletion of the entire leucine biosynthetic operon was normal, indicating none of the gene products of this operon are required for regulation of transport. Salmonella typhimurium LT2 strain leu-500, a single-site mutation affecting both promotor-like and operator-like function of the leuABCD gene cluster, also had normal regulation of the LIV-I transport system. All of the strains contained leucine-specific transport activity, which was also repressed by growth in media containing leucine, isoleucine and valine. The concentrated shock fluids from these strains grown in minimal medium or with excess leucine, isoleucine, and valine were examined for proteins with leucine-binding activity, and the levels of these proteins were found to be regulated normally. It appears that the branched-chain amino acid transport systems and biosynthetic enzymes in E. coli strains K-12 and B/r and in S. typhimurium strain LT2 are not regulated together by a cis-dominate type of mechanism, although both systems may have components in common.  相似文献   

19.
Uptake of isoleucine, leucine, and valine in Escherichia coli K-12 is due to several transport processes for which kinetic evidence has been reported elsewhere. A very-high-affinity transport process, a high-affinity transport process, and three different low-affinity transport processes were described. In this paper the existence of these transport processes is confirmed by the isolation and preliminary characterization of mutants altered in one or more of them. The very-high-affinity transport process is missing either in strains carrying the brnR6(am) mutation or in strains carrying the brn-8 mutation. This appears to be a pleiotropic effect since other transport systems are also missing. Mutant analysis shows that more than one transport system with high affinity is present. One of them, high-affinity 1, which needs the activity of a protein produced by the brnQ gene, transports isoleucine, leucine, and valine and is unaffected by threonine. The other, high-affinity 2, which needs the activity of a protein produced by the brnS gene, transports isoleucine, leucine, and valine; this uptake is inhibited by threonine which probably is a substrate. Another protein, produced by the brnR gene, is required for uptake through both high-affinity 1 and high-affinity 2 transport systems. The two systems therefore appear to work in parallel, brnR being a branching point. The brnQ gene is located close to phoA at 9.5 min on the chromosome of E. coli, the brnR gene is located close to lac at 9.0 min, and the brnS gene is close to pdxA at 1 min. A mutant lacking the low-affinity transport system for isoleucine was isolated from a strain in which the high-affinity system was missing because of a brnR mutation. This strain also required isoleucine for growth because of an ilvA mutation. The mutant lacking the low-affinity transport system was unable to grow on isoleucine but could grow on glycylisoleucine. This mutant had lost the low-affinity transport for isoleucine, whereas those for leucine and valine were unaffected. A pleiotropic consequence of this mutation (brn-8) was a complete absence of the very-high-affinity transport system due either to the alteration of a common gene product or to any kind of secondary interference which inhibits it. Mutants altered in isoleucine-leucine-valine transport were isolated by taking advantage of the inhibition that valine exerts on the K-12 strain of E. coli. Mutants resistant both to valine inhibition (Val(r)) and to glycylvaline inhibition are regulatory mutants. Val(r) mutants that are sensitive to glycylvaline inhibition are transport mutants. When the very-high-affinity transport process is repressed (for example by methionine) the frequency of transport mutants among Val(r) mutants is higher, and it is even higher if the high-affinity transport process is partially inhibited by leucine.  相似文献   

20.
Enzymes of the Isoleucine-Valine Pathway in Acinetobacter   总被引:2,自引:2,他引:0       下载免费PDF全文
Regulation of four of the enzymes required for isoleucine and valine biosynthesis in Acinetobacter was studied. A three- to fourfold derepression of acetohydroxyacid synthetase was routinely observed in two different wild-type strains when grown in minimal medium relative to cells grown in minimal medium supplemented with leucine, valine, and isoleucine. A similar degree of synthetase derepression was observed in appropriately grown isoleucine or leucine auxotrophs. No significant derepression of threonine deaminase or transaminase B occurred in either wild-type or mutant cells grown under a variety of conditions. Three amino acid analogues were tested with wild-type cells; except for a two- to threefold derepression of dihydroxyacid dehydrase when high concentrations of aminobutyric acid were added to the medium, essentially the same results were obtained. Experiments showed that threonine deaminase is subject to feedback inhibition by isoleucine and that valine reverses this inhibition. Cooperative effects in threonine deaminase were demonstrated with crude extracts. The data indicate that the synthesis of isoleucine and valine in Acinetobacter is regulated by repression control of acetohydroxyacid synthetase and feedback inhibition of threonine deaminase and acetohydroxyacid synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号