首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.  相似文献   

2.
The capacity of natural killer (NK) cells to mediate Fc receptor-dependent effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), largely contributes to their clinical application. Given that activation-induced C-type lectin (AICL), an identified ligand for the NK-activating receptor NKp80, is frequently highly expressed on leukemia cells, the lack of therapeutic AICL-specific antibodies limits clinical application. Here we explore a strategy to reinforce NK anti-leukemia reactivity by combining targeting AICL-expressing leukemia cells with the induction of NK cell ADCC using NKp80-Fc fusion proteins. The NKp80-Fc fusion protein we generated bound specifically to leukemia cells in an AICL-specific manner. Cell binding assays between NK and leukemia cells showed that NKp80-Fc significantly increased NK target cell conjugation. In functional analyses, treatment with NKp80-Fc clearly induced the ADCC effect of NK cells. NKp80-Fc not only promoted NK-mediated leukemia cell apoptosis in the early stage of cell conjugation but also enhanced NK cell degranulation and cytotoxicity activity in the late stage. The bifunctional NKp80-Fc could redirect NK cells toward leukemia cells and triggered NK cell killing in vitro. Moreover, NKp80-Fc enhanced the lysis of NK cells against tumors in leukemia xenograft non-obese diabetic/severe combined immunodeficiency mice. Taken together, our results demonstrate that NKp80-Fc potently amplifies NK cell anti-leukemia effects in vitro and in vivo through induction of the NK cell ADCC effect. This method could potentially be useful for molecular targeted therapy, and the fusion proteins may be a promising drug for immunotherapy of leukemia.  相似文献   

3.
Summary The natural killer (NK) and lymphokine-activated killer (LAK) cell activities of peripheral blood lymphocytes from chronic myeloid leukemia (CML) patients in remission and from healthy donors have been studied. Regression analysis to compare both cytotoxic responses in individual donors and the frequency of LAK cell precursors was also carried out. About 42% of CML patients in remission showed low NK activity (less than the mean percentage NK activity of healthy donors — 2 SD) and were categorised as low NK responders. The stage of remission or the drugs used to bring about remission did not influence the NK status. The LAK activity of low NK as well as normal NK responder CML patients was significantly low against the NK-sensitive K562 cell line and the NK-resistant VIP (melanoma) and T-24 (bladder carcinoma) tumor targets, as assessed by linear regression analysis. Allogeneic leukemic cells were more resistant to killing, especially by patients' LAK cells. The frequency analysis of LAK cell precursors revealed a significant reduction in the LAK cell progenitor frequency in CML patients in remission.  相似文献   

4.
The human T lymphoblastoid cell line CEM was subjected to immunoselection by co-culture with peripheral blood mononuclear cells (PBMC) for resistance to natural killer (NK) cell-mediated lysis. The NK susceptibility of the resulting subline, CEM.NKR, was 8.4 to 20.6% of that of CEM when PBMC or adherent cell-depleted PBMC were used as effector cells, and -7.1 to 12.1% of that of CEM when Percoll gradient-enriched large granular lymphocytes (LGL) were used. However, CEM and CEM.NKR exhibited comparable sensitivity to antibody-dependent cellular cytotoxicity. Unlabeled CEM was eight- to 32-fold more effective than unlabeled CEM.NKR in inhibiting the NK lysis of labeled CEM target cells, and CEM bound 1.9 to 3.9-fold more Percoll gradient-enriched LGL than CEM.NKR in single cell-binding assays, suggesting that the NK-resistant variant has lost the expression of NK target antigens. However, CEM.NKR was comparable to CEM in its ability to induce interferon (IFN)-alpha production by PBMC in vitro, and the NK-resistant variant maintained its susceptibility to the antiproliferative effects of IFN-alpha, indicating that these phenomena may be mediated by molecules other than NK target structures. Comparison of CEM and CEM.NKR by indirect immunofluorescence with monoclonal antibodies specific for leukocyte antigens and the transferrin receptor, and by microcytotoxicity typing for HLA-A and B specificities, revealed no major differences.  相似文献   

5.
The abilities of unfractionated mononuclear cells (MNC), monocytes (98-99% pure), and lymphocytes (98-99% pure) to carry out the lysis of target cells in the ADCC, NK, NOCC, and MICC assays were compared. Lymphocytes by themselves were able to lyse the CRBC (ADCC), K-562 (NK), and RRBC (MICC) target cells. The monocytes were very effective in the lysis of the CRBC (MICC) target cells. However, the lysis of two other target cells--RRBC (NOCC) and HRBC (ADCC)--required the simultaneous presence of both lymphocytes and monocytes in order to effect optimal lysis. Soluble factor(s) secreted by the cytotoxic cells capable of lysing the target cells were detected only in the NK assay. The activity of the soluble cytotoxic factor (NKCF) was only 25-40% of that exhibited by the cytotoxic NK cells and it was secreted by the cytotoxic cells after 48 hr of culture and not 24 hr of culture which is the usual assay condition. The NKCF was cytotoxic only to the NK target cells and not to the target cells used in the ADCC, NOCC, and MICC cytotoxic assays. Different classes of lymphocytes were cytotoxic in the monocyte-independent assays [ADCC (CRBC), NK (K-562), and MICC (RRBC)]. The null lymphocytes and the T lymphocytes were the primary cytotoxic cells in the ADCC and MICC assays, respectively, whereas the T, B, and null cells were almost equally cytotoxic in the NK assay. With respect to the monocyte-dependent assays [ADCC (HRBC), NOCC (RRBC), and MICC (CRBC)], the cytotoxic activity of any one class of lymphocytes failed to approach that of the unfractionated MNC. The T cells were the most cytotoxic; the B cells exhibited limited cytotoxic activity in only the ADCC assay and the null cells showed no cytotoxic activity. However, the combination of T and non-T cells and, to a lesser extent, T and B cells, exhibited much greater cytotoxic activity than the individual cells and together were as cytotoxic as the unfractionated MNC. It is concluded that, depending upon the selection of the target cells, lysis in the ADCC, NK, NOCC, and MICC assays may be effected by lymphocytes only, by monocytes only, by both monocytes and lymphocytes, or as a result of lymphocyte-monocyte collaboration. In the latter instance more than one class of lymphocytes must be present in order for maximum cytotoxic activity to be expressed.  相似文献   

6.
Human NK cells lyse Ab-coated target cells through the process of Ab-dependent cellular cytotoxicity (ADCC). Improving ADCC responses is desirable because it is thought to be an important antitumor mechanism for some Abs. NK cell inhibitory receptors, such as killer cell Ig-like receptors, engage with MHC class I molecules on self-cells to block NK cell activation. Accordingly, we enhanced ADCC responses by blocking NK cell inhibitory receptors, thus perturbing induction of the self-recognition signal. In a cell line model of anti-lymphoma therapy, the combination of rituximab with an Ab that blocks inhibitory self-recognition yielded increased NK cell-mediated target cell lysis when compared with rituximab alone. To validate this proof-of-concept, we then used a more representative approach in which an individual's fresh primary NK cells encountered autologous, EBV-transformed B cells. In this system, rituximab and a combination of Abs that block NK cell inhibitory receptors yielded improved NK cell-mediated lysis over rituximab alone. The results show, for the first time, that disruption of inhibitory self-recognition can efficiently promote ADCC in a human model, applying an autologous system in which physiologic checkpoints are in place. This method provides an alternative approach to potentiate the therapeutic benefit of antitumor Abs that mediate ADCC.  相似文献   

7.
Cytotoxic effector cells like cytotoxic T cells, NK cells, monocytes/macrophages, and neutrophils can lyse directly HIV-infected or HIV-coated cells in the absence or presence of anti-HIV antibodies. Therefore, these cytotoxic mechanisms can be invoked either in the control of HIV infection at early stages of the disease or in the generalized immunosuppression observed at later stages of the disease. The relationship between anti-HIV effector mechanisms and disease, however, remains elusive. The present study investigates in HIV+ seropositive asymptomatic patients peripheral blood monocytes (PBM)-mediated antibody dependent cellular cytotoxicity (ADCC) against HIV-coated target cells in the presence of heterologous or autologous anti-HIV serum. To test for specific ADCC against HIV Ag, a T4+ CEM.TR line resistant to TNF and macrophage-mediated cytotoxicity was selected in vitro. ADCC was performed in an 18-h 51Cr-release assay using CEM.TR cells coated with inactivated HIV. Unlike PBM from normal controls, significant ADCC was observed by PBM from HIV+ seropositive patients in the presence of pooled HIV+ antiserum. The ADCC activity was specific for HIV and was dependent on the E:T ratio and the antiserum dilution used. Upon activation of PBM with rIFN-gamma, both normal and HIV+ PBM-mediated ADCC against HIV-coated CEM.TR. Furthermore, ADCC activity by PBM from HIV+ seropositive patients in the presence of their autologous serum was examined. Significant ADCC activity was observed and was dependent on the E:T ratio and serum dilution used. The findings demonstrating anti-HIV ADCC activity by PBM from HIV+ seropositive individuals and their autologous sera support the notion that monocyte-mediated ADCC may be operative in vivo.  相似文献   

8.
Summary Interferons consistently enhance spontaneous cellular cytotoxicity (SCC) mediated by natural killer (NK) cells. More controversial is the ability of interferons to enhance antibody-dependent cellular cytotoxicity (ADCC) mediated by killer (K) cells. Since NK and K cells appear to represent overlapping subpopulations of lymphocytes, the present study was undertaken to examine in greater detail the relationship between NK and K cell functional modulation by the potent interferon inducer, poly I:C. Utilizing peripheral mononuclear cells from a panel of 21 healthy individuals, treatment in vitro with poly I:C resulted in modulation of both SCC and ADCC. SCC was significantly enhanced in 52 of a series of 55 trials (95%), whereas ADCC was significantly enhanced in parallel in only 18 of the trials (33%). Cells which mediated enhanced ADCC were plastic-nonadherent, which is characteristic of K cells. SCC was consistently enhanced in all but two of the 14 individuals who were tested two or more times. By contrast, the ability of poly I:C to enhance ADCC varied between trials in 11 of these individuals. In the other three, ADCC enhancement never occurred. No correlation existed between SCC and ADCC augmentation despite use of the same target cell to assess the two lytic activities in parallel. Poly I:C exclusively enhanced SCC in 36 trials (65%) and exclusively enhanced ADCC in two trials (4%). Discordance between SCC and ADCC enhancement also occurred in three of eight trials (38%) in which lymphocytes were treated directly with interferon a. Results in long-term (18-h) 51Cr-release assays indicated that poly I:C accelerated the kinetics of ADCC without affecting the proportion of target cells lysed by K cells. By contrast, an increased proportion of target cells was killed by poly I:C-stimulated NK cells. These results suggest that the controversy concerning relative interferon effects upon NK and K cells derives from differences both quantitative and qualitative in nature. K cell activity is enhanced but at a relatively low frequency. Enhancement of NK cell activity is selective in the sense that it occurs independently of and with greater frequency than enhancement of K cell activity. Distinct biological mechanisms may, therefore, be involved in regulation and expression of NK and K cell activation by interferons.  相似文献   

9.
Neuroblastoma, a childhood tumour of neuroectodermal origin, accounts for 15 % of paediatric cancer deaths, which is often metastatic at diagnosis and despite aggressive therapies, it has poor long-term prognosis with high risk of recurrence. Monoclonal antibody (mAb) therapy targeting GD2, a disialoganglioside expressed on neuroblastoma, has shown promise in recent trials with natural killer cell (NK)-mediated antibody-dependent cellular cytotoxicity (ADCC) thought to be central to efficacy, although other immune effectors may be important. To further enhance therapy, immunomonitoring of patients is essential to elucidate the in vivo mechanisms of action and provides surrogate end points of efficacy for future clinical trials. Our aim was to establish a ‘real-time’ ex vivo whole-blood (WB) immunomonitoring strategy to perform within the logistical constraints such as limited sample volumes, anticoagulant effects, sample stability and shipping time. A fluorescent dye release assay measuring target cell lysis was coupled with flow cytometry to monitor specific effector response. Significant target cell lysis with anti-GD2 antibody (p < 0.05) was abrogated following NK depletion. NK up-regulation of CD107a and CD69 positively correlated with target cell lysis (r > 0.6). The ADCC activity of WB correlated with peripheral blood mononuclear cells (r > 0.95), although WB showed overall greater target cell lysis attributed to the combination of NK-mediated ADCC, CD16+ granulocyte degranulation and complement-dependent cytotoxicity. Response was maintained in heparinised samples stored for 24 h at room temperature, but not 4 °C. Critically, the assay showed good reproducibility (mean % CV < 6.4) and was successfully applied to primary neuroblastoma samples. As such, WB provides a resourceful analysis of multiple mechanisms for efficient end point monitoring to correlate immune modulation with clinical outcome.  相似文献   

10.
Summary Cytotoxic cells (CTCs) generated from peripheral blood lymphocytes of 5 chronic myeloid leukemia (CML) patients in remission on stimulation with autologous leukemic cells and allogeneic lymphocytes (3-cell assay), were propagated in vitro in interleukin-2 (IL-2)-containing medium and periodic stimulation with autologous leukemic cells, for a period of 4 to 6 months. During this period, the cells were assessed for phenotype and for cytotoxic responses in a 4-h 51Cr release microcytotoxicity assay. The CTCs continued to show specific lysis of autologous leukemic cells and bone marrow (BM) cells. However, the nonspecific lysis of natural killer (NK) targets and the proportion of cells showing NK phenotype (HNK-1 antigen) increased progressively on cultivation in IL-2-containing medium. Therefore cells showing CD8 phenotype and specific cytotoxic function were segregated by cloning CTCs under the condition of limiting dilution in the presence of allogeneic feeder cells and IL-2-containing medium. Three cytotoxic T cell (CTL) clones expressing CD3+, CD8+, and HLA DR+ phenotypes were obtained from CTCs of 2 CML patients. These clonoid populations, maintained in IL-2-containing medium and periodic antigenic stimulation with autologous leukemic cells, showed specific lysis of autologous leukemic cells and BM cells even at lower (10:1) effector:target ratios. They did not kill K562 (erythroblastoid leukemic NK target cell line) cells and autologous phytohemagglutinin-induced blasts. These clones apparently functioned in an MHC-restricted manner as they did not lyse allogeneic CML cells which would also express a similar set of maturation antigens if sensitization was, as it appeared, against these antigens. Finally, interaction of autologous BM cells with CTL clones reduced the colony forming potential of BM cells only to the extent of 18%–30%. The results therefore indicate that such CTL clones can possibly be used in adoptive immunotherapy as they showed minimal BM toxicity.  相似文献   

11.
A thymic lymphoblastoid cell line derived from a New Zealand Black mouse produces murine leukemia virus (MuLV) and was used as a target in model systems for the in vitro study of antibody-dependent cellular cytotoxicity (ADCC). Several human lymphoblastoid cell lines were investigated as potential effector cells. The most promising (Raji cells) bound to antibody-coated target cells but caused only modest levels of ADCC at 25:1 effector-to-target cell ratio with substantial lysis in the absence of antiserum. Human peripheral lymphocytes were active as effector cells in ADCC at a 5:1 ratio and produced no lysis in the absence of antibody. These cells were used to demonstrate that high dilutions of rabbit antisera to MuLV antigens p30, p15, p12, and p10 were capable of mediating lysis of MuLV-producing target cells but not of a virus-negative murine cell line. A murine antiserum to Thy 1.2 and three caprine antisera to MuLV antigens that were active in complement-mediated cytotoxicity functioned poorly in inducing ADCC; however, rabbit antisera to similar antigens were 16- to 512-fold more efficient in cell-mediated than in complement lysis. The inefficiency of goat antisera was not due to shedding of cell surface antigens or generation of blocking factors but rather to lack of lytic interaction of antibody-coated targets with the effector cells.  相似文献   

12.
Antibodies can direct tumor cell lysis by activating complement-mediated and cell-mediated cytoxicities (antibody-dependent cell-mediated cytotoxicity, ADCC). Clinical translation of these effects into successful cancer therapy has been slow. Choosing an appropriate animal model to test new therapeutic strategies is difficult because of species differences in immunological effector functions. In previous work, we found that an unmodified anti-ganglioside mouse IgG3 monoclonal antibody (mAb), 3F8, could successfully treat clinical tumors in humans and experimental tumors in rats but not experimental tumors in mice. We explored the reasons for this species difference by performing in vitro antibody-dependent cytotoxicity assays comparing the potency of polymorphonuclear neutrophils (PMN), natural killer (NK) cells and complement from the three species: mouse, rat and human. 3F8-dependent complement-mediated cytotoxicity produced more than 70% specific release when human and rat sera were used and only 20% with mouse serum. PMN-mediated ADCC was 35%–70% with human effectors, 25%–60% with rat and undetectable with mouse. Human eosinophils did not contribute to this ADCC. Cytotoxicity utilizing interleukin-2-activated NK cells was antibody-independent in all three species but the specific release was 60%–70% with human and rat NK cells and 10% with mouse NK cells. These data suggest that, for mouse IgG3, the rat may provide a more relevant rodent model than the mouse for testing the in vivo antitumor effects of monoclonal antibodies. Received: 20 January 2000 / Accepted: 24 March 2000  相似文献   

13.
The incubation of human peripheral blood lymphocytes (PBL) with the natural killer (NK)-sensitive MOLT-4 cell line results in PBL-target cell conjugate formation by certain lymphocyte subpopulations. Following velocity sedimentation, the PBL depleted of these conjugate-forming subpopulations are markedly diminished in the ability to mediate either antibody-dependent cellular cytotoxicity (ADCC) or NK activity. The immediate testing of highly pure PBL subpopulations isolated from the NK target conjugates does not reveal the expected recovery of augmented ADCC or NK levels. Following in vitro incubation, however, the PBL NK target-binding subpopulations do manifest augmented levels of both NK and ADCC, whereas the depleted PBL continue to display diminished NK and ADCC levels. In addition, the degree of augmented NK and ADCC levels recovered by the NK target-binding PBL subpopulations appears dependent on both the time and the temperature of in vitro incubation. Moreover, the ADCC recovery patterns are identical to those observed for NK activity regardless of the time and temperature of in vitro incubation. These results directly demonstrate that the PBL subpopulations isolated from certain NK target cells are functionally enriched in the ability to mediate from ADCC and NK activity.  相似文献   

14.
Induced differentiation in three human cell lines altered their sensitivity specifically to human natural killer (NK) cells by affecting their expression of NK target antigens. Differentiation of HL-60, a promyelocytic leukemia cell line, and the erythroleukemic cell line K562 was accompanied by a concomitant decrease in susceptibility to NK-mediated lysis whereas induction of MeWo melanoma cells resulted in an enhanced sensitivity to lysis. Our findings suggest that target cell susceptibility to NK-mediated lysis may in part be dependent on the stage of differentiation of the tumor cell target.  相似文献   

15.
In this report, we present data on heterogeneity of rat NK cells utilizing a combination of antibody and lectin-binding characteristics. Among NKR-P1bright NK cells, two discrete populations characterized as Lycopersicon esculentum lectin (L.E.)bright (60 to 80%) and L.E.dim (20 to 40%) were identified by flow cytometry. Comparison of the morphology of sorted NKR-P1bright/L.E.bright and NKR-P1bright/L.E.dim cells indicated that both were greater than 90% LGL. An analysis of the functional capabilities of the sub-populations indicated that NKR-P1bright/L.E.bright NK cells were more efficient in lysis of YAC-1 target cells (1743 LU20/10(7) cells) than were NKR-P1bright/L.E.dim cells (504 LU20/10(7) cells). Conversely, NKR-P1bright/L.E.dim NK cells were much more efficient at lysis of antibody-sensitized erythrocytes (antibody-dependent cellular cytotoxicity (ADCC)) (1412 LU20/10(7) cells) than were NKR-P1bright/L.E.bright cells (165 LU20/10(7) cells). Lysis of antibody sensitized P815 target cells yielded similar results as NKR-P1bright/L.E.dim cells and NKR-P1bright/L.E.bright cells had 905 LU20/10(7) and 189 LU20/10(7), respectively. Additional experiments indicated that NKR-P1bright/L.E.bright NK cells had the capacity to trigger lytic activity via NKR-P1 whereas NKR-P1bright/L.E.dim NK cells did not. NKR-P1bright/L.E.bright sorted cells had a greater capacity to form conjugates with YAC-1 target cells than did NKR-P1bright/L.E.dim sorted cells. Conversely, NKR-P1bright/L.E.dim NK cells were demonstrated to form E-A rosettes whereas the NKR-P1bright/L.E.bright NK cells were not. Additional experiments indicated that tomato lectin itself was not responsible for the differences in reverse ADCC activity or ADCC activity among the subsets. However, lysis of YAC-1 target cells was modulated to some degree by the lectin. These data indicate that NKR-P1bright/L.E.bright and NKR-P1bright/L.E.dim subpopulations of rat NK cells have different capacities for: 1) triggering through NKR-P1; and 2) E-A rosette formation and lysis of antibody-sensitized target cells by ADCC.  相似文献   

16.
The monoclonal antibodies, VEP10 and OKT10, which have been shown to recognize determinants on human natural killer (NK) cells, inhibit large granular lymphocyte (LGL) NK activity against K562, MOLT4, and CEM tumor target cells in the single cell conjugate agarose assay. Inhibition of NK activity by monoclonal antibodies was expressed independently of effector-target cell binding, as inhibitory activity could be demonstrated when the monoclonal antibodies VEP10 and OKT10 were added to preformed conjugates or to the LGLs and targets prior to the binding event. In addition, this inhibition was exerted on the effector cell and not the target cell since VEP10 and OKT10 did not react with determinants on K562 target cells. Furthermore, the 4F2 monoclonal antibody, which reacted with determinants on the LGL and all of the targets used, effected no inhibition of NK activity. Inhibition of killing by OKT10 and VEP10 was specific to endogenous NK activity since the same antibodies did not inhibit antibody-dependent cellular cytotoxicity (ADCC), mixed lymphocyte-generated NK, or cytotoxic T lymphocyte (CTL) activities.  相似文献   

17.
Monocytes and natural killer (NK) cells are known to be important effector cell populations in mediating antibody-dependent cell-mediated cytotoxicity (ADCC). Purified monocyte and NK effector cell populations, from normal and colorectal cancer (CRC) patients, together with a number of murine (17-1A and 323/A3) and their chimaeric (c17-1A) or humanised (3622W94) equivalents, and chimaeric (c) SF25 were compared for their ability to mediate ADCC of colorectal tumour cells. The chimaeric and humanised antibodies were significantly better at mediating tumour lysis than their murine equivalents with all-effector populations. When effector cells from CRC patients were used the cSF25 antibody was significantly better than 3622W94 (P < 0.02) which, in turn, was significantly better than c17-1A (P < 0.03). Depletion of NK cells produced a decrease in specific tumour lysis with all antibodies. In addition a higher rate of NK cell death was observed in CRC patients during the assay than in normal controls. The chimaeric and humanised antibodies stained a similar percentage of the HT-29 target cells (>80%), but 3622W94 bound to significantly more cells from primary tumour biopsies than cSF-25 (P = 0.001). Together, the results suggest that NK cells are the most important effector cell type mediating ADCC in vitro, that there is some impairment of NK function in CRC patients, and that cSF25 is the most potent antibody. For use in vivo the anti-Ep-CAM antibody 3622W94 would appear to be the most suitable reagent for further study. Received: 3 June 1999 / Accepted: 22 July 1999  相似文献   

18.
Summary Natural killer (NK) cell activity and antibody dependent cell-mediated cytotoxicity (ADCC) was measured in 62 untreated cervical carcinoma patients and 25 normal healthy women, using a short-term chromium release assay. A significant reduction in NK and ADCC activity was observed in disseminated disease than in localized disease, when compared with normal donors. The majority of the patients received radiotherapy and both NK and ADCC activity recovered after therapy. Furthermore, interferon- was demonstrated to augment NK activity of peripheral blood mononuclear cells from healthy donors as well as patients. Also large granular lymphocytes separated on Percoll density gradient were the same in number in both the populations studied, although in cervical cancer there seemed to be a defect in killing activity.  相似文献   

19.
Summary Rat fibrosarcoma cells infected with Friend leukemia virus (FV-KMT-17) grow for a short time and then regress spontaneously in syngeneic hosts. This regression mechanism was examined by analyzing the immunomodulating action of the antitumor drugs busulfan (BU) and cyclophosphamide (CY). In preliminary experiments, the optimum dosages of BU and CY for the enhancement of DTH responses to SRBC were 10 mg/kg and 40 mg/kg respectively. Treatment of rats with BU (10 mg/kg) on day 5 induced the regression of KMT-17 cells, while in contrast, the same drug delayed the spontaneous regression of FV-KMT-17 cells. Pretreatment with CY (40 mg/kg) on day 5 did not affect the growth of KMT-17 or FV-KMT-17 cells. After the same treatment schedule, BU inhibited humoral antibody formation against SRBC and against virus-associated antigen (VAA), NK cell activity, and ADCC effector cell activity. On the other hand, CY did not affect the activities of NK cells or ADCC effector cells, although it significantly augmented the DTH responses to SRBC and the production of antibody to VAA but had no effect on production of antibodies to SRBC. These results suggest that NK cells and ADCC may play an important role in the initial stage of the spontaneous regression of FV-KMT-17 cells.Supported in part by a Grant-in-Aid for Cancer Research from the Japanese Ministry of Education Abbreviations used: BU, busulfan; CY, cyclophosphamide; PFC assay, plaque forming cell assay; VAA, virus-associated antigen; NK cell, natural killer cell; ADCC, antibody dependent cellular cytotoxicity; MuLV, murine leukemia virus; DTH, delayed type hypersensitivity; SRBC, sheep red blood cells; C.I., cytotoxic index; CRBC, chicken red blood cells; IL-1, interleukin 1; IL-2, interleukin 2; IFN, interferon  相似文献   

20.
Human monocytes exposed in vitro to recombinant macrophage-colony-stimulating factor (rhMCSF) differentiate into monocyte-derived macrophages (MDM), which mediate efficient antibodydependent cytotoxicity (ADCC) against tumor cells. We and others have shown that this form of ADCC is unusual in that phagocytosis, rather than extracellular lysis, appears to play the major role in target cell killing. In this study, we asked whether the phagocytic form of cytotoxicity seen with ADCC could occur in the absence of an opsonizing antibody. We now report that, whereas cell lines derived from solid tumors are often resistant to antibody-independent cytotoxicity, malignant cells of lymphoid origin appear particularly susceptible to such antibody-independent killing. We found that all of nine lymphocytic leukemia and lymphoma cell lines tested in a total of 35 experiments, plus all four samples of fresh leukemic blasts, were consistently susceptible to antibody-independent MDM cytotoxicity. Antibody-independent cytotoxicity against these cells was efficient (40%–63% killing) at effector: target (E:T) ratios as low as 2:1. Like ADCC, antibody-independent cytotoxicity involved phagocytosis of target cells, as demonstrated by ingestion of fluorescently labeled targets and analysis by flow cytometry. At the time of phagocytosis, the majority of target cells retained membrane integrity, as indicated by the direct transfer of intracellular [51Cr]chromate from radiolabeled targets to phagocytosing MDM, without release of the label into the medium. However, in contrast to ADCC, we found that the degree of antibody-independent cytotoxicity was not a function of the E:T ratio. Instead, a constant proportion of the available target cells were killed regardless of the E:T ratio, suggesting that target cell recognition, rather than effector cell potency, might be the limiting factor in determining cytotoxicity. In additional experiments, we have also identified a second tumor cell type, nueroblastoma, as being susceptible to antibody-independent phagocytosis (all of five cell lines tested, cytotoxicity 40%–93%, E:T=3:1). Our data thus indicate that the cytotoxicity induced by rhMCSF is not confined to antibody-mediated killing, and that phagocytosis can play a significant role in target cell destruction even in the absence of opsonizing antibody.Supported in part by grants CA-33049 and CA-53624 from the National Institutes of Health, grant IRG-174b from the American Cancer Society, the Friends of Children Toys-R-Us Foundation. Inc., and the Robert Steel Foundation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号