首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Inflammatory responses of myeloid cells to LPS are mediated through CD14, a glycosylphosphatidylinositol-anchored receptor that binds LPS. Since CD14 does not traverse the plasma membrane and alternatively anchored forms of CD14 still enable LPS-induced cellular activation, the precise role of CD14 in mediating these responses remains unknown. To address this, we created a transmembrane and a glycosylphosphatidylinositol-anchored form of LPS-binding protein (LBP), a component of serum that binds and transfers LPS to other molecules. Stably transfected Chinese hamster ovary (CHO) fibroblast and U373 astrocytoma cell lines expressing membrane-anchored LBP (mLBP), as well as separate CHO and U373 cell lines expressing membrane CD14 (mCD14), were subsequently generated. Under serum-free conditions, CHO and U373 cells expressing mCD14 responded to as little as 0.1 ng/ml of LPS, as measured by NF-kappaB activation as well as ICAM and IL-6 production. Conversely, the vector control and mLBP-expressing cell lines did not respond under serum-free conditions even in the presence of more than 100 ng/ml of LPS. All the cell lines exhibited responses to less than 1 ng/ml of LPS in the presence of the soluble form of CD14, demonstrating that they are still capable of LPS-induced activation. Taken together, these results demonstrate that mLBP, a protein that brings LPS to the cell surface, does not mediate cellular responses to LPS independently of CD14. These findings suggest that CD14 performs a more specific role in mediating responses to LPS than that of simply bringing LPS to the cell surface.  相似文献   

2.
Cellular responses to LPS, the major lipid component of the outer membrane of Gram-negative bacteria, are enhanced markedly by the LPS-binding protein (LBP), a plasma protein that transfers LPS to the cell surface CD14 present on cells of the myeloid lineage. LBP has been shown previously to potentiate the host response to LPS. However, experiments performed in mice with a disruption of the LBP gene have yielded discordant results. Whereas one study showed that LBP knockout mice were resistant to endotoxemia, another study did not confirm an important role for LBP in the response of mice challenged in vivo with low doses of LPS. Consequently, we generated rat mAbs to murine LBP to investigate further the contribution of LBP in experimental endotoxemia. Three classes of mAbs were obtained. Class 1 mAbs blocked the binding of LPS to LBP; class 2 mAbs blocked the binding of LPS/LBP complexes to CD14; class 3 mAbs bound LBP but did not suppress LBP activity. In vivo, class 1 and class 2 mAbs suppressed LPS-induced TNF production and protected mice from lethal endotoxemia. These results show that the neutralization of LBP accomplished by blocking either the binding of LPS to LBP or the binding of LPS/LBP complexes to CD14 protects the host from LPS-induced toxicity, confirming that LBP is a critical component of innate immunity.  相似文献   

3.
The kinetics of the interaction of lipopolysaccharide (LPS), lipopolysaccharide binding protein (LBP) and CD14 was studied using surface plasmon resonance. The association and dissociation rate constants for the binding of LPS and rsCD14 were 2.9 x 10(4) M(-1) s(-1) and 0.07 s(-1) respectively, yielding a binding constant of 4.2 x 10(5) M(-1). Significantly, the presence of LBP increased not only the association rate but also the association constant for the interaction between LPS and CD14 by three orders of magnitude. Our experimental results suggest that LBP interacts with LPS and CD14 to form a stable trimolecular complex that has significant functional implications as it allows monocytes to detect the presence of LPS at a concentration as low as 10 pg/ml or 2 pM, and to respond by secreting interleukin-6. Thus, LBP is not merely transferring LPS to CD14 but it forms an integral part of the LPS-rLBP-rsCD14 complex.  相似文献   

4.
The inhibition of LPS-induced cell activation by specific antagonists is a long-known phenomenon; however, the underlying mechanisms are still poorly understood. It is commonly accepted that the membrane-bound receptors mCD14 and TLR4 are involved in the activation of mononuclear cells by LPS and that activation may be enhanced by soluble LPS-binding protein (LBP). Hexaacylated Escherichia coli lipid A has the highest cytokine-inducing capacity, whereas lipid A with four fatty acids (precursor IVa, synthetic compound 406) is endotoxically inactive, but expresses antagonistic activity against active LPS. Seeking to unravel basic molecular principles underlying antagonism, we investigated phospholipids with structural similarity to compound 406 with respect to their antagonistic activity. The tetraacylated diphosphatidylglycerol (cardiolipin, CL) exhibits high structural similarity to 406, and our experiments showed that CL strongly inhibited LPS-induced TNF-alpha release when added to the cells before stimulation or as a CL/LPS mixture. Also negatively charged and to a lesser degree zwitterionic diacyl phospholipids inhibited LPS-induced cytokine production. Using Abs against LBP, we could show that the activation of cells by LPS was dependent on the presence of cell-associated LBP, thus making LBP a possible target for the antagonistic action of phospholipids. In experiments investigating the LBP-mediated intercalation of LPS and phospholipids into phospholipid liposomes mimicking the macrophage membrane, we could show that preincubation of soluble LBP with phospholipids leads to a significant reduction of LPS intercalation. In summary, we show that LBP is a target for the inhibitory function of phospholipids.  相似文献   

5.
High-density lipoprotein (HDL) is an abundant plasma lipoprotein that is generally thought to be anti-inflammatory in both health and infectious disease. It binds and neutralizes the bioactivity of the potent bacterial lipids, LPS and lipoteichoic acid, that stimulate host innate immune responses. LPS-binding protein (LBP) plays an important role in augmenting leukocyte responses to LPS, whereas high concentrations of LBP, in the range of those found in plasma, can be inhibitory. We found that native HDL (nHDL) augmented human monocyte responses to LPS in the presence of inhibitory concentrations of LBP as measured by production of TNF and other cytokines. HDL did not stimulate cells in the absence of LPS, and it did not augment responses that were stimulated by IL-1beta or lipoteichoic acid. This activity of HDL was inhibited by trypsin treatment, suggesting that one or more protein constituents of HDL are required. In contrast to nHDL, low-density lipoprotein, and reconstituted HDL did not possess this activity. The total lipoprotein fraction of normal plasma had activity that was similar to that of nHDL, whereas lipoproteins from septic patients with reduced HDL levels had a reduced ability to augment responses to LPS; this activity was restored by adding normal HDL to the patient lipoproteins. Our results demonstrate a novel proinflammatory activity of HDL that may help maintain sensitive host responses to LPS by suppressing the inhibitory activity of LBP. Our findings also raise the possibility that the decline of HDL during sepsis may help control the response to LPS.  相似文献   

6.
We investigated the mechanism by which cationic antimicrobial peptides block the activation of macrophages by LPS. The initial step in LPS signaling is the transfer of LPS to CD14 by LPS binding protein (LBP). Because many cationic antimicrobial peptides bind LPS, we asked whether these peptides block the binding of LPS to LBP. Using an assay that measures the binding of LPS to immobilized LBP, we show for the first time that a variety of structurally diverse cationic antimicrobial peptides block the interaction of LPS with LBP. The relative ability of different cationic peptides to block the binding of LPS to LBP correlated with their ability to block LPS-induced TNF-alpha production by the RAW 264.7 macrophage cell line.  相似文献   

7.
The endothelial response to LPS is critical in the recruitment of leukocytes, thereby allowing the host to survive Gram-negative infection. Herein, we investigated the roles of soluble CD14 (sCD14) and membrane CD14 (mCD14) in the endothelial response to low level LPS (0.1 ng/ml), intermediate level LPS (10 ng/ml), and high level LPS (1000 ng/ml). Removal of sCD14 from serum and sCD14-negative serum prevented low level LPS detection and subsequent response. Addition of recombinant sCD14 back into the endothelial system rescued the endothelial response. GPI-linked mCD14 removal from endothelium or endothelial treatment with a CD14 mAb prevented responses to low-level LPS even in the presence of sCD14. This demonstrates essential nonoverlapping roles for both mCD14 and sCD14 in the detection of low-level LPS. At intermediate levels of LPS, sCD14 was not required, but blocking mCD14 still prevented endothelial LPS detection and E-selectin expression, even in the presence of sCD14, suggesting that sCD14 cannot substitute for mCD14. At very high levels of LPS, the absence of mCD14 and sCD14 did not abrogate TLR4-dependent, E-selectin synthesis in response to LPS. The MyD88 independent pathway was detected in endothelium (presence of TRIF-related adaptor molecule TRAM). The MyD88-independent response (IFN-beta) in endothelium required mCD14 even at the highest LPS dose tested. Our results demonstrate an essential role for endothelial mCD14 that cannot be replaced by sCD14. Furthermore, we have provided evidence for a TRAM pathway in endothelium that is dependent on mCD14 even when other responses are no longer mCD14 dependent.  相似文献   

8.
Lipopolysaccharide (LPS)-binding protein regulates the effects of LPS on immunocompetent cells. By catalyzing the binding of LPS to membrane CD14, LPS-binding protein (LBP) potentiates both the inflammatory response and internalization of LPS. LBP-mediated transport of LPS into high density lipoprotein particles participates in LPS clearance. Elevated serum levels of LBP have been shown to elicit protective effects in vivo. Because the expression of LBP is upregulated in lung epithelial cells upon proinflammatory stimulation, we here investigated whether LBP modulates inflammatory responses by lung specific cells. The moderate elevation of LBP concentrations enhanced both LPS-induced signaling and LPS uptake by rat alveolar macrophages, whereas strongly elevated LBP levels inhibited both. In contrast, the lung epithelial cell line A549 responded to high concentrations of LBP by an enhanced LPS uptake which did not result in cellular activation, suggesting an anti-inflammatory function of these cells by clearing LPS.  相似文献   

9.
We have demonstrated previously that tetra-acylated LPS derived from the oral bacterium, Porphyromonas gingivalis, and penta-acylated msbB LPS derived from a mutant strain of Escherichia coli can antagonize the ability of canonical hexa-acylated E. coli LPS to signal through the TLR4 signaling complex in human endothelial cells. Activation of the TLR4 signaling complex requires the coordinated function of LPS binding protein (LBP), CD14, MD-2, and TLR4. To elucidate the specific molecular components that mediate antagonism, we developed a recombinant human TLR4 signaling complex that displayed efficient LPS-dependent antagonism of E. coli LPS in HEK293 cells. Notably, changes in the expression levels of TLR4 in HEK293 cells modulated the efficiency of antagonism by P. gingivalis LPS. Both soluble (s) CD14 and membrane (m) CD14 supported efficient P. gingivalis LPS-dependent and msbB LPS-dependent antagonism of E. coli LPS in the recombinant TLR4 system. When cells expressing TLR4, MD-2, and mCD14 were exposed to LPS in the absence of serum-derived LBP, efficient LPS-dependent antagonism of E. coli LPS was still observed indicating that LPS-dependent antagonism occurs downstream of LBP. Experiments using immunoprecipitates of sCD14 or sMD-2 that had been pre-exposed to agonist and antagonist indicated that LPS-dependent antagonism occurs partially at sCD14 and potently at sMD-2. This study provides novel evidence that expression levels of TLR4 can modulate the efficiency of LPS-dependent antagonism. However, MD-2 represents the principal molecular component that tetra-acylated P. gingivalis LPS and penta-acylated msbB LPS use to antagonize hexa-acylated E. coli LPS at the TLR4 signaling complex.  相似文献   

10.
Heparin is one of the most effective drugs for preventing and treating thromboembolic complications in surgical patients. Recent evidence suggests that heparin enhances the proinflammatory responses of human peripheral blood monocytes to Gram-negative endotoxin (LPS). We have identified LPS-binding protein (LBP) as a novel heparin-binding plasma protein. The affinity of LPB to heparin was KD = 55 +/- 8 nM, as measured by surface plasmon resonance. Using a fluorescence-based assay, we showed that clinically used heparin preparations significantly enhance the ability of LBP to catalytically disaggregate and transfer LPS to CD14, the LPS receptor. The presence of clinically relevant heparin concentrations in human whole blood increased LPS-induced production of the proinflammatory cytokine IL-8. Fondaparinux, which is identical with the antithrombin III-binding pentasaccharide in heparin, did not bind to LBP or alter LBP function. Thus, this novel anticoagulant drug is a potential candidate for safe administration to patients who have endotoxemia and require anticoagulation.  相似文献   

11.
The lipopolysaccharide (LPS) and fimbriae of Porphyromonas gingivalis play important roles in periodontal inflammation and pathogenesis. We investigated fimbriae and LPS from several P. gingivalis strains in terms of relative dependence on Toll-like receptor (TLR) signalling partners or accessory pattern-recognition molecules mediating ligand transfer to TLRs, and determined induced assembly of receptor complexes in lipid rafts. Fimbriae could utilize TLR1 or TLR6 for cooperative TLR2-dependent activation of transfected cell lines, in contrast to LPS and a mutant version of fimbriae which displayed preference for TLR1. Whether used to activate human cell lines or mouse macrophages, fimbriae exhibited strong dependence on membrane-expressed CD14 (mCD14), which could not be substituted for by soluble CD14 (sCD14). In contrast, sCD14 efficiently substituted for mCD14 in LPS-induced cellular activation. LPS-binding protein was more important for LPS- than for fimbria-induced cell activation, whereas the converse was true for CD11b/CD18. Cell activation by LPS or fimbriae required lipid raft function and formation of heterotypic receptor complexes (TLR1-2/CD14/CD11b/CD18), although wild-type fimbriae additionally recruited TLR6. In summary, TLR2 activation by P. gingivalis LPS or fimbriae involves differential dependence on accessory signalling or ligand-binding receptors, which may differentially influence innate immune responses.  相似文献   

12.
13.
Chylomicrons have been shown to protect against endotoxin-induced lethality. LPS-binding protein (LBP) is involved in the inactivation of bacterial toxin by lipoproteins. The current study examined the interaction among LBP, chylomicrons, and bacterial toxin. LBP was demonstrated to associate with chylomicrons and enhance the amount of LPS binding to chylomicrons in a dose-dependent fashion. In addition, LBP accelerated LPS binding to chylomicrons. This LBP-induced interaction of LPS with chylomicrons prevented endotoxin toxicity, as demonstrated by reduced cytokine secretion by PBMC. When postprandial circulating concentrations of chylomicrons were compared with circulating levels of low density lipoprotein, very low density lipoprotein, and high density lipoprotein, chylomicrons exceeded the other lipoproteins in LPS-inactivating capacity. Furthermore, highly purified lipoteichoic acid, an immunostimulatory component of Gram-positive bacteria, was detoxified by incubation with LBP and chylomicrons. In conclusion, our results indicate that LBP associates with chylomicrons and enables chylomicrons to rapidly bind bacterial toxin, thereby preventing cell activation. Besides a role in the detoxification of bacterial toxin present in the circulation, we believe that LBP-chylomicron complexes may be part of a local defense mechanism of the intestine against translocated bacterial toxin.  相似文献   

14.
Soluble CD14 (sCD14), a 55-kDa glycoprotein found in plasma, has been shown to act as a shuttle for bacterial LPS and phospholipids, transporting LPS and phospholipid monomers from LPS aggregates or liposomes to high density lipoprotein particles. sCD14 has also been shown to mediate the transport of LPS and phosphatidylinositol into cells. Here we show that sCD14 mediates not only the influx but also the efflux of cellular phospholipids. Addition of sCD14 enhanced efflux of cellular phospholipids labeled with [(3)H]palmitic acid, [(3)H]oleic acid, or [(3)H]choline chloride from differentiated THP-1 monocytic cells. Efflux was dependent on the concentration of sCD14 added and was essentially complete in 30 min. The role of membrane-bound CD14 (mCD14) in lipid efflux was assessed using matched pairs of cell lines that express or fail to express this protein. While efflux was very dependent on mCD14 in U373 cells, it was not dependent on mCD14 in Chinese hamster ovary cells, suggesting a role for additional cellular proteins in determining the pathway of phospholipid efflux. A deletion mutant of sCD14 lacking the LPS binding site had less ability to efflux phospholipids than intact sCD14, suggesting that this site is needed for CD14 to serve in phospholipid transport. [(3)H]Palmitate-labeled lipids released by sCD14 were precipitated with anti-CD14 then analyzed by HPLC. Phosphatidylcholine was the dominant phospholipid exported and bound to sCD14. These results demonstrate that sCD14 mediates efflux of phospholipids from cells and suggest that sCD14 contributes to phospholipid transport in blood.  相似文献   

15.
Bacterial lipoproteins are the most potent microbial agonists for the Toll-like receptor 2 (TLR2) subfamily, and this pattern recognition event induces cellular activation, leading to host immune responses. Triacylated bacterial lipoproteins coordinately bind TLR1 and TLR2, resulting in a stable ternary complex that drives intracellular signaling. The sensitivity of TLR-expressing cells to lipoproteins is greatly enhanced by two lipid-binding serum proteins known as lipopolysaccharide-binding protein (LBP) and soluble CD14 (sCD14); however, the physical mechanism that underlies this increased sensitivity is not known. To address this, we measured the ability of LBP and sCD14 to drive ternary complex formation between soluble extracellular domains of TLR1 and TLR2 and a synthetic triacylated lipopeptide agonist. Importantly, addition of substoichiometric amounts of either LBP or sCD14 significantly enhanced formation of a TLR1·TLR2 lipopeptide ternary complex as measured by size exclusion chromatography. However, neither LBP nor sCD14 was physically associated with the final ternary complex. Similar results were obtained using outer surface protein A (OspA), a naturally occurring triacylated lipoprotein agonist from Borrelia burgdorferi. Activation studies revealed that either LBP or sCD14 sensitized TLR-expressing cells to nanogram levels of either the synthetic lipopeptide or OspA lipoprotein agonist. Together, our results show that either LBP or sCD14 can drive ternary complex formation and TLR activation by acting as mobile carriers of triacylated lipopeptides or lipoproteins.  相似文献   

16.
The bactericidal/permeability increasing (BPI) and lipopolysaccharide (LPS)-binding (LBP) proteins are closely related two-domain proteins in which LPS binding is mediated by the NH(2)-terminal domain. To further define the role of the COOH-terminal domain of these proteins in delivery of LPS to specific host acceptors, we have compared interactions of LBP, BPI, LBP(N)-BPI(C) (NH(2)-terminal domain of LBP, COOH-terminal domain of BPI), and BPI(N)-LBP(C) with purified (3)H-LPS and, subsequently, with purified leukocytes and soluble (s)CD14. The COOH-terminal domain of LBP promotes delivery of LPS to CD14 on both polymorphonuclear leukocytes and monocytes resulting in cell activation. In the presence of Ca(2+) and Mg(2+), LBP and BPI each promote aggregation of LPS to protein-LPS aggregates of increased size (apparent M(r) > 20 x 10(6) Da), but only LPS associated with LBP and BPI(N)-LBP(C) is disaggregated in the presence of CD14. BPI and LBP(N)-BPI(C) promote apparently CD14-independent LPS association to monocytes without cell activation. These findings demonstrate that the carboxyl-terminal domain of these closely related endotoxin-binding proteins dictates the route and host responses to complexes they form with endotoxin.  相似文献   

17.
A doublet of medfly hemocyte proteins with a molecular mass of about 55 and 50 kDa were precipitated with LPS. Antibodies raised against human CD14 recognize the same doublet of proteins. These results support that mammalian CD14 and the doublet of protein bands in medfly hemocytes share common epitopes. This doublet of protein bands is released from hemocytes upon LPS triggering. A portion of the released protein is clustered on the surface of a distinct hemocyte type and the other remains soluble. The membrane-bound LPS-binding protein is involved in LPS internalization and Escherichia coli phagocytosis but not in LPS signaling.  相似文献   

18.
Lipopolysaccharide (LPS)-binding protein (LBP), an opsonin for activation of macrophages by bacterial LPS, is synthesized in hepatocytes and is known to be an acute phase protein. Recently, cytokine-induced production of LBP was reported to increase 10-fold in hepatocytes isolated from LPS-treated rats, compared with those from normal rats. However, the mechanism by which the LPS treatment enhances the effect of cytokines remains to be clarified. In the present study, we examined whether LPS alone or an LPS/LBP complex directly stimulates the hepatocytes, leading to acceleration of the cytokine-induced LBP production. HepG2 cells (a human hepatoma cell line) were shown to express CD14, a glycosylphosphatidylinositol-anchored LPS receptor, by both RT/PCR and flow cytometric analyses. An LPS/LBP complex was an effective stimulator for LBP and CD14 production in HepG2 cells, but stimulation of the cells with either LPS or LBP alone did not significantly accelerate the production of these proteins. The findings were confirmed by semiquantitative RT/PCR analysis of mRNA levels of LBP and CD14 in HepG2 cells after stimulation with LPS alone and an LPS/LBP complex. In addition, two monoclonal antibodies (mAbs) to CD14 (3C10 and MEM-18) inhibited LPS/LBP-induced cellular responses of HepG2 cells. Furthermore, prestimulation of HepG2 cells with LPS/LBP augmented cytokine-induced production and gene expression of LBP and CD14. All these findings suggest that an LPS/LBP complex, but not free LPS, stimulates HepG2 cells via CD14 leading to increased basal and cytokine-induced LBP and CD14 production.  相似文献   

19.
20.
LPS-binding protein (LBP) binds with high affinity (Kd approximately equal to 10(-9) M) to lipid A of LPS isolated from rough (R)- or smooth (S)-form Gram-negative bacteria as well as to lipid A partial structures such as precursor IVA. To define the role of LBP in regulating responses to LPS we have examined TNF release in rabbit peritoneal exudate macrophages (M phi) stimulated with LPS or with complete or partial lipid A preparations in the presence or absence of LBP. In the presence of LBP, M phi showed increased sensitivity to S- and R-form LPS as well as synthetic lipid A. Compared with LPS or lipid A, up to 1000-fold greater concentrations of partial lipid A structures were required to induce TNF production. However, consistent with our previous observations that these structures bind to LBP, TNF production was increased in the presence of LBP. In contrast, LBP did not enhance or inhibit TNF production produced by heat-killed Staphylococcus aureus, peptidoglycan isolated from S. aureus cell walls, or PMA. Potentiated M phi responsiveness to LPS was observed with as little as 1 ng LBP/ml. Heat-denatured LBP (which no longer binds LPS), BPI (an homologous LPS-binding protein isolated from neutrophils), or other serum proteins were without effect. LBP-treated M phi also showed a more rapid induction of cytokine mRNA (TNF and IL-1 beta), higher steady-state mRNA levels and increased TNF mRNA stability. These data provide additional evidence that LBP is part of a highly specific recognition system controlling M phi responses to LPS. The effects of LBP are lipid A dependent and importantly, extend to LPS preparations isolated from bacteria of R- and S-form phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号