首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polar transport of kinetin in tissues of radish   总被引:1,自引:1,他引:0       下载免费PDF全文
Polar transport of kinetin-8-14C occurred in segments of petioles, hypocotyls, and roots of radish (Raphanus sativus L.). The polarity was basipetal in petioles and hypocotyls and acropetal in roots. In segments excised from seedlings with fully expanded cotyledons, indole-3-acetic acid was required for polarity to develop. In hypocotyl segments isolated at this stage, basipetal and acropetal movements were equal during the first 12 hours of auxin treatment after which time acropetal movement declined. Pretreatment with auxin eliminated this delay in the appearance of polarity. In hypocotyl segments excised from seedlings with expanding cotyledons, exogenous auxin was unnecessary for polarity. Potassium cyanide abolished polarity at both stages of growth by allowing increased acropetal movement. The rate of accumulation of kinetin in receiver blocks was greater than the in vivo increase in cytokinin content of developing radish roots.  相似文献   

2.
There is evidence that the cap is the initial site of lateral auxin redistribution during the gravitropic response of roots. We tested this further by comparing asymmetric auxin redistribution across the tips of gravistimulated intact roots, decapped roots, isolated root caps and isolated apical sections taken from decapped roots. Gravistimulation caused asymmetric (downward) auxin movement across the tips of intact roots and isolated root caps but not across the tips of decapped roots or across isolated apical root segments. Naphthylphthalamic acid and pyrenoylbenzoic acid, inhibitors of polar auxin transport, inhibited asymmetric auxin redistribution across gravistimulated isolated root caps and across the tips of gravistimulated intact roots. For intact roots there was a positive correlation between the extent of inhibition of assymmetric auxin redistribution by polar auxin transport inhibitors and the extent of inhibition of asymmetric calcium chelating agent, ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid, also caused parallel inhibition of asymmetric auxin redistribution and gravitropic curvature and this effect was reversed by subsequent treatment with calcium. The results support the hypothesis that the cap is a site of early development of auxin asymmetry in gravistimulated roots and that calcium plays an important role in the development of lateral auxin redistribution.  相似文献   

3.
3H-IAA transport in excised sections of carnation cuttings was studied by using two receiver systems for recovery of transported radioactivity: agar blocks (A) and wells containing a buffer solution (B). When receivers were periodically renewed, transport continued for up to 8 h and ceased before 24 h. If receivers were not renewed, IAA transport decreased drastically due to immobilization in the base of the sections. TIBA was as effective as NPA in inhibiting the basipetal transport irrespective of the application site (the basal or the apical side of sections). The polarity of IAA transport was determined by measuring the polar ratio (basipetal/acropetal) and the inhibition caused by TIBA or NPA. The polar ratio varied with receiver, whereas the inhibition by TIBA or NPA was similar. Distribution of immobilized radioactivity along the sections after a transport period of 24 h showed that the application of TIBA to the apical side or NPA to the basal side of sections, increased the radioactivity in zones further from the application site, which agrees with a basipetal and acropetal movement of TIBA and NPA, respectively. The existence of a slow acropetal movement of the inhibitor was confirmed by using 3H-NPA. From the results obtained, a methodological approach is proposed to measure the variations in polar auxin transport. This method was used to investigate whether the variations in rooting observed during the cold storage of cuttings might be related to changes in polar auxin transport. As the storage period increased, a decrease in intensity and polarity of auxin transport occurred, which was accompanied by a delay in the formation and growth of adventitious roots, confirming the involvement of polar auxin transport in supplying the auxin for rooting. Received April 19, 1999; accepted December 2, 1999  相似文献   

4.
Acropetal and basipetal movement of indole-3-acetic acid through coleoptiles of Avena sativa L. was studied. Sections 10-mm long were supplied with either apical or basal sources containing C(14) carboxyl-labeled indoleacetic acid (10(-5)m). Anaerobic conditions inhibit metabolically dependent movement (transport) thus reducing basipetal but not acropetal movement. Total inhibition of basipetal transport abolishes the polarity of auxin uptake and movement. The nonpolar movement that remains in anaerobic sections is free diffusion with an average diffusion coefficient of approximately 1 x 10(-4) mm(2) per second. During an 8-hour diffusion, at least the first millimeter of the section comes to equilibrium at approximately the same concentration as the donor.Acropetal movement is probably by diffusion and is accompanied by an aerobic immobilization of indoleacetic acid that increases more than proportionally to concentration. Anaerobic conditions totally prevent this immobilization and reduce acropetal uptake but not the amount of indoleacetic acid moving into the upper parts of the section; there is, therefore, no evidence for acropetal transport.Polarity of auxin movement in aerobic coleoptile sections is achieved by strict basipetal transport of auxin. The basipetal transport may intensify the polarity by recycling auxin that is moving acropetally.  相似文献   

5.
Auxin transport has been reported to occur in two distinct polarities, acropetally and basipetally, in two different root tissues. The goals of this study were to determine whether both polarities of indole-3-acetic acid (IAA) transport occur in roots of Arabidopsis and to determine which polarity controls the gravity response. Global application of the auxin transport inhibitor naphthylphthalamic acid (NPA) to roots blocked the gravity response, root waving, and root elongation. Immediately after the application of NPA, the root gravity response was completely blocked, as measured by an automated video digitizer. Basipetal [(3)H]IAA transport in Arabidopsis roots was inhibited by NPA, whereas the movement of [(14)C]benzoic acid was not affected. Inhibition of basipetal IAA transport by local application of NPA blocked the gravity response. Inhibition of acropetal IAA transport by application of NPA at the root-shoot junction only partially reduced the gravity response at high NPA concentrations. Excised root tips, which do not receive auxin from the shoot, exhibited a normal response to gravity. The Arabidopsis mutant eir1, which has agravitropic roots, exhibited reduced basipetal IAA transport but wild-type levels of acropetal IAA transport. These results support the hypothesis that basipetally transported IAA controls root gravitropism in Arabidopsis.  相似文献   

6.
Wu G  Lewis DR  Spalding EP 《The Plant cell》2007,19(6):1826-1837
Auxin affects the shape of root systems by influencing elongation and branching. Because multidrug resistance (MDR)-like ABC transporters participate in auxin transport, they may be expected to contribute to root system development. This reverse genetic study of Arabidopsis thaliana roots shows that MDR4-mediated basipetal auxin transport did not affect root elongation or branching. However, impaired acropetal auxin transport due to mutation of the MDR1 gene caused 21% of nascent lateral roots to arrest their growth and the remainder to elongate 50% more slowly than the wild type. Reporter gene analyses indicated a severe auxin deficit in the apex of mdr1 but not mdr4 lateral roots. The mdr1 deficit was explained by 40% less acropetal auxin transport within the mdr1 lateral roots. The slow elongation of mdr1 lateral roots was rescued by auxin and phenocopied in the wild type by an inhibitor of polar auxin transport. Confocal microscopy analysis of a functional green fluorescent protein-MDR1 translational fusion showed the protein to be auxin inducible and present in the tissues responsible for acropetal transport in the primary root. The protein also accumulated in lateral root primordia and later in the tissues responsible for acropetal transport within the lateral root, fully supporting the conclusion that auxin levels established by MDR1-dependent acropetal transport control lateral root growth rate to influence root system architecture.  相似文献   

7.
Wochok ZS 《Plant physiology》1974,53(5):738-741
The rhizophore of Selaginella willdenovii Baker develops from the ventral angle meristem. The morphological nature of this organ has been in dispute. The purpose of this investigation was to obtain physiological evidence to support the contention that the rhizophore is a root and not a shoot. This was accomplished by studying the movement of 3H-indoleacetic acid and 14C-indoleacetic acid in Selaginella rhizophores. In 6-millimeter tissue segments, twice as much radioactivity accumulated in acropetal receivers as in basipetal. During 1 hour of transport in intact roots auxin traveled twice as far in the acropetal direction as basipetal. A significant amount of radioactivity transported in the tissue was found to co-chromatograph with cold indoleacetic acid. Decarboxylation accounted for 10% loss of activity from donors. The data provide sufficient physiological evidence that this organ is morphogenetically a root.  相似文献   

8.
Deposition of ammonium (NH4+) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4+ is well studied, little is known about how shoot‐supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin‐responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN‐FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1‐dependent auxin transport from shoot to root.  相似文献   

9.
Summary The cytoplasm of maize coleoptile cells was displaced to either the apical or basal ends of the cells by centrifuging (1750xg for 10 min) segments in which protoplasmic streaming had been stopped by pretreatment with cytochalasin B. Centrifugation toward the base of the segment promotes the subsequent basipetal transport of indole-3-acetic acid, whereas apical centrifugation dramatically inhibits this transport. Apical centrifugation neither promotes acropetal transport nor reverses the polarity of auxin transport. Experiments in which the amyloplasts were separated from the bulk of the cytoplasm indicate that the basipetal transport is independent of both the position and pressure exerted by the amyloplasts but is strongly dependent on the amount of cytoplasm at the basal end of the cells. These effects of centrifugation on auxin transport lead to the conclusion that the metabolic component of the transport is a polar secretion of auxin localized in the basal plasma membrane of each cell.  相似文献   

10.
The effect of a 180° displacement from the normal vertical orientation on longitudinal growth and on the acropetal and basipetal movement of 14C-IAA was investigated in Avena sativa L. and Zea mays L. coleoptile sections. Inversion inhibits growth in intact sections (apex not removed) and in decapitated sections supplied apically with donor blocks containing auxin. Under aerobic conditions, inversion inhibits basipetal auxin movement and promotes acropetal auxin movement, whereas under anaerobic conditions, it does not influence the movement of auxin in either direction. Inversion retards the basipetal movement of the peak of a 30-minute pulse of auxin in corn.

The inversion-induced inhibition of basipetal auxin movement is not explained by an effect of gravity on production, uptake, destruction, exit from sections, retention in tissue, or purely physical movement of auxin. It is concluded that inversion (a) inhibits basipetal transport, the component of auxin movement that is metabolically dependent, and as a result (b) inhibits growth and (c) promotes acropetal auxin movement.

  相似文献   

11.
Maintenance of polarity of auxin movement by basipetal transport   总被引:4,自引:3,他引:1       下载免费PDF全文
The polar, basipetal transport of indoleacetic acid helps to maintain polarity of auxin movement in coleoptiles of Avena sativa L. by opposing acropetal diffusion. This conclusion is supported by 3 different kinds of experiments. In all 3 experiments, sections took up 14C carboxyl-labeled indole-3-acetic acid anaerobically, and the distribution of auxin within all sections was similar at the end of uptake.

[List: see text]

  相似文献   

12.
Transport of tritiated cyclic AMP in the coleoptile of oats (Avena sativa) and corn (Zea mays) is polar, with basipetal to acropetal ratios of 4.0 and 3.2, respectively. The rate of transport is approximately that of indoleacetic acid. The linear velocity of transport, however, is at least five times that of auxin. A loss in transport polarity of the nucleotide occurs in subapical tissues within several hours after decapitation of the coleoptile, accompanied by a decrease in transport rate. The loss in polarity is not reversed by exogenous auxin, but the reduction in transport is. Auxin also inhibits the uptake of cyclic AMP. Exogenous cyclic AMP is metabolized rapidly by coleoptile tissues. If cyclic AMP does have a cellular function in the coleoptile, its transport behavior is compatible with that of a hormone.  相似文献   

13.
The graviresponsiveness of intact and primary maize roots kept horizontally in darkness and humid air is analysed. A precise local application of IAA is possible when using resin beads (diameter: 0.45 +/- 0.05 mm) loaded with IAA. The beads are placed on the upper or lower sides of the caps. They significantly change the root gravireaction. The effect of IAA is discussed in terms of its possible level in the growing and gravibending zones and its transport (acropetal, lateral and basipetal) respectively in the stele, the cap and the cortex of the elongating root.  相似文献   

14.
W. Hartung  I. D. J. Phillips 《Planta》1974,118(4):311-322
Summary Movement of both [3H]GA1 and [14C]GA3 through root segments from P. coccineus seedlings was basipetally polarised. The basipetal/acropetal ratio of radioactivity from [3H]GA1 in agar receiver blocks was 9.2 for apical, elongating segments, and 4.0 for more basal, non-elongating segments. Polarity of gibberellin transport was restricted to the stele, and absent from cortical tissues. Transport of [14C]IAA through root segments to agar receivers was preferentially acropetal, particularly so in the stele. Despite the existence of basipetal polarity of gibberellin transport in the root, [3H]GA1 injected into cotyledons moved into and acropetally along the seedling root.  相似文献   

15.
Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.  相似文献   

16.
We compared the kinetics of auxin redistribution across the caps of primary roots of 2-day-old maize (Zea mays, cv Merit) seedlings with the time course of gravitropic curvature. [3H] indoleacetic acid was applied to one side of the cap in an agar donor and radioactivity moving across the cap was collected in an agar receiver applied to the opposite side. Upon gravistimulation the roots first curved upward slightly, then returned to the horizontal and began curving downward, reaching a final angle of about 67°. Movement of label across the caps of gravistimulated roots was asymmetric with preferential downward movement (ratio downward/upward = ca. 1.6, radioactivity collected during the 90 min following beginning of gravistimulation). There was a close correlation between the development of asymmetric auxin movement across the root cap and the rate of curvature, with both values increasing to a maximum and then declining as the roots approached the final angle of curvature. In roots preadapted to gravity (alternate brief stimulation on opposite flanks over a period of 1 hour) the initial phase of upward curvature was eliminated and downward bending began earlier than for controls. The correlation between asymmetric auxin movement and the kinetics of curvature also held in comparisons between control and preadapted roots. Both downward auxin transport asymmetry and downward curvature occurred earlier in preadapted roots than in controls. These findings are consistent with suggestions that the root cap is not only the site of perception but also the location of the initial redistribution of effectors that ultimately leads to curvature.  相似文献   

17.
The accumulation and redistribution of the plant hormone auxin plays a crucial role in root development and patterning. Plants can alter their root system architecture (RSA) to adapt to different biotic and abiotic stresses. In addition, reactive oxygen species (ROS), such as H2O2, are known to increase in plants undergoing stress. Here, we present evidence that H2O2 can regulate auxin accumulation and redistribution through modulating polar auxin transport, leading to changes in RSA. Plants exposed to different concentrations of H2O2 formed a highly branched root system with abundant lateral roots and a shorter primary root. Monitoring of the auxin responsive DR5::GUS indicated that auxin accumulation decreased in lateral root primordia (LRP) and emerging lateral root tips. In addition, polar auxin transport, including both basipetal and acropetal transport modulated by AUX1 and PIN protein carriers, was involved in the process. Taken together, our results suggest that H2O2 could regulate plastic RSA by perturbing polar auxin transport as a means of modulating the accumulation and distribution of auxin.  相似文献   

18.
Abstract

Exposure of Zea mays seedlings to a continuous electromagnetic field (EMF) for 30 h induced a 30% stimulation in the rate of root elongation compared with the controls. It also resulted in a significant increase of cell expansion, in both the acropetal (metaxylem cell lineage) and basipetal (root cap cells) direction. In addition, in EMF-exposed roots a precocious structural disorder was observed both in differentiating metaxylem cells and root cap cells. All these features may be consistent with an advanced differentiation of root cells that are programmed to die. EMF treatment also resulted in a significant reduction in the size of the quiescent centre in the root apical meristem. The extent to which these responses are causally linked is discussed.  相似文献   

19.
Two Arabidopsis thaliana ABC transporter genes linked to auxin transport by various previous results were studied in a reverse-genetic fashion. Mutations in Multidrug Resistance-Like1 (MDR1) reduced acropetal auxin transport in roots by 80% without affecting basipetal transport. Conversely, mutations in MDR4 blocked 50% of basipetal transport without affecting acropetal transport. Developmental and auxin distribution phenotypes associated with these altered auxin flows were studied with a high-resolution morphometric system and confocal microscopy, respectively. Vertically grown mdr1 roots produced positive and negative curvatures threefold greater than the wild type, possibly due to abnormal auxin distribution observed in the elongation zone. However, upon 90 degrees reorientation, mdr1 gravitropism was inseparable from the wild type. Thus, acropetal auxin transport maintains straight growth but contributes surprisingly little to gravitropism. Conversely, vertically maintained mdr4 roots grew as straight as the wild type, but their gravitropism was enhanced. Upon reorientation, curvature in this mutant developed faster, was distributed more basally, and produced a greater total angle than the wild type. An amplified auxin asymmetry may explain the mdr4 hypertropism. Double mutant analysis indicated that the two auxin transport streams are more independent than interdependent. The hypothesis that flavanols regulate MDR-dependent auxin transport was supported by the epistatic relationship of mdr4 to the tt4 phenylpropanoid pathway mutation.  相似文献   

20.
IAA transport in Vicia root segments was investigated for comparisonwith that in intact roots. Lanolin paste (1-mm-wide ring) oragar blocks (3?3?1.5mm), both containing IAA-2-14C were appliedto the surface or a cut end of the root segments, respectively;transported 14C was collected in receiver agar blocks placedon the cut end of the segments. When lanolin paste was appliedto 5-mm segments, basipetal transport of IAA predominated overacropetal transport. When agar blocks were applied to 1- and2-mm segments, the same was true; in longer segments (3 and5 mm long), however, basipetal movement occurred predominantlyat first but was surpassed by acropetal movement after 2–3hr. Among the segments tested (regions 2–4, 4–6and 8–10 mm from the tip), the most apical one showedthe distinctest predominancy of basipetal movement. The velocitiesof the acropetal and basipetal movement of the 14C were estimatedat 3–3.8 and 8–12 mm/hr, respectively. Autoradiographicstudy and the experiment in which wire was inserted longitudinallythrough the central part of the segments showed that basipetalmovement occurred mainly through the outer part of the rootsand acropetal movement mainly through the central cylinder.The present results were compatible with those obtained previouslywith intact roots. Some properties of polar movement, such asits specificity, inhibition by TIBA, and dependency on terneprature are described. (Received March 22, 1978; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号