首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Fragile X syndrome (FXS) is a common cause of inherited intellectual disability and a well-characterized form of autism spectrum disorder. As brain-derived neurotrophic factor (BDNF) is implicated in the pathophysiology of FXS we examined the effects of reduced BDNF expression on the behavioral phenotype of an animal model of FXS, Fmr1 knockout (KO) mice, crossed with mice carrying a deletion of one copy of the Bdnf gene (Bdnf(+/-)). Fmr1 KO mice showed age-dependent alterations in hippocampal BDNF expression that declined after the age of 4 months compared to wild-type controls. Mild deficits in water maze learning in Bdnf(+/-) and Fmr1 KO mice were exaggerated and contextual fear learning significantly impaired in double transgenics. Reduced BDNF expression did not alter basal nociceptive responses or central hypersensitivity in Fmr1 KO mice. Paradoxically, the locomotor hyperactivity and deficits in sensorimotor learning and startle responses characteristic of Fmr1 KO mice were ameliorated by reducing BNDF, suggesting changes in simultaneously and in parallel working hippocampus-dependent and striatum-dependent systems. Furthermore, the obesity normally seen in Bdnf(+/-) mice was eliminated by the absence of fragile X mental retardation protein 1 (FMRP). Reduced BDNF decreased the survival of newborn cells in the ventral part of the hippocampus both in the presence and absence of FMRP. Since a short neurite phenotype characteristic of newborn cells lacking FMRP was not found in cells derived from double mutant mice, changes in neuronal maturation likely contributed to the behavioral phenotype. Our results show that the absence of FMRP modifies the diverse effects of BDNF on the FXS phenotype.  相似文献   

4.
Synaptojanin is a polyphosphoinositide phosphatase that is found at synapses and binds to proteins implicated in endocytosis. For these reasons, it has been proposed that synaptojanin is involved in the recycling of synaptic vesicles. Here, we demonstrate that the unc-26 gene encodes the Caenorhabditis elegans ortholog of synaptojanin. unc-26 mutants exhibit defects in vesicle trafficking in several tissues, but most defects are found at synaptic termini. Specifically, we observed defects in the budding of synaptic vesicles from the plasma membrane, in the uncoating of vesicles after fission, in the recovery of vesicles from endosomes, and in the tethering of vesicles to the cytoskeleton. Thus, these results confirm studies of the mouse synaptojanin 1 mutants, which exhibit defects in the uncoating of synaptic vesicles (Cremona, O., G. Di Paolo, M.R. Wenk, A. Luthi, W.T. Kim, K. Takei, L. Daniell, Y. Nemoto, S.B. Shears, R.A. Flavell, D.A. McCormick, and P. De Camilli. 1999. Cell. 99:179-188), and further demonstrate that synaptojanin facilitates multiple steps of synaptic vesicle recycling.  相似文献   

5.
6.
J. Klingauf 《Neurophysiology》2007,39(4-5):305-306
The use of modern techniques (in particular, novel fluorescence markers of a few molecular participants of the exo-and endocytotic processes, including pH-sensitive agents, immuno-electron and laser-scanning microscopy) allows experimenters to visualize different stages of recycling of synaptic vesicle proteins. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 350–351, July–October, 2007.  相似文献   

7.
Neurogranin (Ng), a brain‐specific calmodulin‐binding protein, is expressed highly in hippocampus, and is important for cognitive function. Deletion of the Ng gene from mice caused attenuation of signal reaction cascade in hippocampus, impairments in learning and memory and high frequency stimulation‐induced long‐term potentiation (LTP). Environmental enrichment alone failed to improve cognitive function. In this study, behavioral testing revealed that Ng knockout (NgKO) mice were both hyperactive and socially withdrawn. Methylphenidate (MPH) was given to mice while they were also kept under an enrichment condition. MPH treatment reduced the hyperactivity of NgKO mice tested in both the open field and forced swim chamber. MPH improved their social abilities such that mice recognized and interacted better with novel subjects. The cognitive memories of MPH‐treated mutants were improved in both water maze and contextual fear conditioning tests. High frequency stimulation‐induced LTP of NgKO mice was also improved by MPH. The present treatment regimen, however, did not fully reverse the deficits of the mutant mice. In contrast, MPH exerted only a minimal effect on the wild type mice. At the cellular level, MPH increased the number of glial fibrillary acidic protein‐positive cells in hippocampus, particularly within the dentate gyrus of NgKO mice. Therefore it will be of interest to determine the nature of MPH‐mediated astrocyte activation and how it may modulate behavior in future studies. Taken together these NgKO mice may be useful for the development of better drug treatment to improve cognitive and behavioral impairments.  相似文献   

8.
Zhang  Bing 《Brain Cell Biology》2003,32(5-8):567-589
Following exocytosis, one of the major presynaptic events is replenishing synaptic vesicles (SVs) to ensure the possibility of continuous synaptic transmission. The nerve terminal is thought to recycle SVs through clathrin-mediated endocytosis and by a clathrin-independent pathway called ‘kiss and run’. This review highlights the use of the genetic model organism, the fruit fly (Drosophila melanogaster), in dissecting the molecular mechanisms of clathrin-mediated endocytosis in recycling SVs at neuromuscular junctions (NMJs). Analyses of endocytotic mutants in Drosophila indicate that clathrin-mediated endocytosis may be essential for SV recycling, including a putative fast recycling mechanism uncovered recently. Further, a rather complex picture begins to emerge suggesting that clathrin-mediated endocytosis involves several sequential steps mediated by a large number of proteins. Finally, these studies also reveal that SV proteins may be selectively retrieved into nascent SVs by clathrin accessory proteins and defects in protein retrieval have significant impacts on synaptic transmission. Following the completion of the Drosophila Genome Project and the development of gene targeting and RNAi approaches, genetic studies in Drosophila have become increasingly efficient. Hence, Drosophila is expected to continue to serve as an important model organism for studies of SV recycling.  相似文献   

9.
It has been hypothesized that in the mature nerve terminal, interactions between synapsin and actin regulate the clustering of synaptic vesicles and the availability of vesicles for release during synaptic activity. Here, we have used immunogold electron microscopy to examine the subcellular localization of actin and synapsin in the giant synapse in lamprey at different states of synaptic activity. In agreement with earlier observations, in synapses at rest, synapsin immunoreactivity was preferentially localized to a portion of the vesicle cluster distal to the active zone. During synaptic activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known function in clustering of vesicles in the reserve pool, synapsin migrates from the synaptic vesicle cluster and participates in the organization of the actin-rich cytomatrix in the endocytic zone during synaptic activity.  相似文献   

10.
The loss of a glutamic acid residue in the AAA-ATPase (ATPases associated with diverse cellular activities) torsinA is responsible for most cases of early onset autosomal dominant primary dystonia. In this study, we found that snapin, which binds SNAP-25 (synaptosome-associated protein of 25,000 Da) and enhances the association of the SNARE complex with synaptotagmin, is an interacting partner for both wild type and mutant torsinA. Snapin co-localized with endogenous torsinA on dense core granules in PC12 cells and was recruited to perinuclear inclusions containing mutant DeltaE-torsinA in neuroblastoma SH-SY5Y cells. In view of these observations, synaptic vesicle recycling was analyzed using the lipophilic dye FM1-43 and an antibody directed against an intravesicular epitope of synaptotagmin I. We found that overexpression of wild type torsinA negatively affects synaptic vesicle endocytosis. Conversely, overexpression of DeltaE-torsinA in neuroblastoma cells increases FM1-43 uptake. Knockdown of snapin and/or torsinA using small interfering RNAs had a similar inhibitory effect on the exo-endocytic process. In addition, down-regulation of torsinA causes the persistence of synaptotagmin I on the plasma membrane, which closely resembles the effect observed by the overexpression of the DeltaE-torsinA mutant. Altogether, these findings suggest that torsinA plays a role together with snapin in regulated exocytosis and that DeltaE-torsinA exerts its pathological effects through a loss of function mechanism. This may affect neuronal uptake of neurotransmitters, such as dopamine, playing a role in the development of dystonic movements.  相似文献   

11.
Using novel fluorescent markers, virus-induced modulation of amphiphysin 1 expression, and electron microscopy, we demonstrated that clathrin-mediated endocytosis is the main mechanism of synaptic vesicle retrieval; a hypothesis on the role of a fast “kiss-and-run” mechanism has not been supported. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 388–389, July–October, 2007.  相似文献   

12.
Botulinum toxins are metalloproteases that act inside nerve terminals and block neurotransmitter release through their cleavage of components of the exocytosis machinery. These toxins are used to treat human diseases that are characterized by hyperfunction of cholinergic terminals. Recently, evidence has accumulated that gangliosides and synaptic vesicle proteins cooperate to mediate toxin binding to the presynaptic terminal. The differential distribution of synaptic vesicle protein receptors, gangliosides and toxin substrates in distinct neuronal populations opens up the possibility of using different serotypes of botulinum toxins for the treatment of central nervous system diseases caused by altered activity of selected neuronal populations.  相似文献   

13.
We have developed a presenilin-1 (PS1) conditional knockout mouse (cKO), in which PS1 inactivation is restricted to the postnatal forebrain. The PS1 cKO mouse is viable and exhibits no gross abnormalities. The carboxy-terminal fragments of the amyloid precursor protein differentially accumulate in the cerebral cortex of cKO mice, while generation of beta-amyloid peptides is reduced. Expression of Notch downstream effector genes, Hes1, Hes5, and Dll1, is unaffected in the cKO cortex. Although basal synaptic transmission, long-term potentiation, and long-term depression at hippocampal area CA1 synapses are normal, the PS1 cKO mice exhibit subtle but significant deficits in long-term spatial memory. These results demonstrate that inactivation of PS1 function in the adult cerebral cortex leads to reduced Abeta generation and subtle cognitive deficits without affecting expression of Notch downstream genes.  相似文献   

14.
Neurotransmitter release and exocytosis of synaptic vesicles in the motor nerve endings of the frog cutaneous-pectoris muscle were studied using electrophysiological and optical methods under the conditions of inhibition of the myosin light-chain kinase and non-muscle myosin by the specific inhibitors ML-7 (12 μM) and (–)-blebbistatin (100 μM). At high-frequency stimulation (20 pulses/s), these inhibitors strengthened suppression of transmitter release during the first 20–25 s and slowed down the release of the fluorescent dye FM 1-43. The obtained results indicate that myosin accelerates rapid synaptic vesicle recycling upon high-frequency stimulation.  相似文献   

15.
Essential role of phosphoinositide metabolism in synaptic vesicle recycling.   总被引:34,自引:0,他引:34  
Growing evidence suggests that phosphoinositides play an important role in membrane traffic. A polyphosphoinositide phosphatase, synaptojanin 1, was identified as a major presynaptic protein associated with endocytic coated intermediates. We report here that synaptojanin 1-deficient mice exhibit neurological defects and die shortly after birth. In neurons of mutant animals, PI(4,5)P2 levels are increased, and clathrin-coated vesicles accumulate in the cytomatrix-rich area that surrounds the synaptic vesicle cluster in nerve endings. In cell-free assays, reduced phosphoinositide phosphatase activity correlated with increased association of clathrin coats with liposomes. Intracellular recording in hippocampal slices revealed enhanced synaptic depression during prolonged high-frequency stimulation followed by delayed recovery. These results provide genetic evidence for a crucial role of phosphoinositide metabolism in synaptic vesicle recycling.  相似文献   

16.
Sullivan JM 《Neuron》2011,72(4):504-505
Synaptic vesicle endocytosis requires membrane curvature, fission, and uncoating. Endophilin has been proposed to play a role in all three steps, but in this issue of Neuron, De Camilli and colleagues show that at mammalian central synapses it is primarily involved in clathrin uncoating.  相似文献   

17.
The recycling of synaptic vesicles in nerve terminals involves multiple steps, underlies all aspects of synaptic transmission, and is a key to understanding the basis of synaptic plasticity. The development of styryl dyes as fluorescent molecules that label recycling synaptic vesicles has revolutionized the way in which synaptic vesicle recycling can be investigated, by allowing an examination of processes in neurons that have long been inaccessible. In this review, we evaluate the major aspects of synaptic vesicle recycling that have been revealed and advanced by studies with styryl dyes, focussing upon synaptic vesicle fusion, retrieval, and trafficking. The greatest impact of styryl dyes has been to allow the routine visualization of endocytosis in central nerve terminals for the first time. This has revealed the kinetics of endocytosis, its underlying sequential steps, and its regulation by Ca2+. In studies of exocytosis, styryl dyes have helped distinguish between different modes of vesicle fusion, provided direct support for the quantal nature of exocytosis and endocytosis, and revealed how the probability of exocytosis varies enormously from one nerve terminal to another. Synaptic vesicle labelling with styryl dyes has helped our understanding of vesicle trafficking by allowing better understanding of different synaptic vesicle pools within the nerve terminal, vesicle intermixing, and vesicle clustering at release sites. Finally, the dyes are now being used in innovative ways to reveal further insights into synaptic plasticity.  相似文献   

18.
19.
The speed of synaptic vesicle recycling determines the efficacy of neurotransmission during repetitive stimulation. Synaptotagmins are synaptic C(2)-domain proteins that are involved in exocytosis, but have also been linked to endocytosis. We now demonstrate that upon expression in transfected neurons, a short splice variant of synaptotagmin 7 that lacks C(2)-domains accelerates endocytic recycling of synaptic vesicles, whereas a longer splice variant that contains C(2)-domains decelerates recycling. These results suggest that alternative splicing of synaptotagmin 7 acts as a molecular switch, which targets vesicles to fast and slow recycling pathways.  相似文献   

20.
Brain-derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) are members of the neurotrophin family and are expressed in the developing and adult tongue papillae. BDNF null-mutated mice exhibit specific impairments related to innervation and development of the gustatory system while NT-3 null mice have deficits in their lingual somatosensory innervation. To further evaluate the functional specificity of these neurotrophins in the peripheral gustatory system, we generated double BDNF/NT-3 knockout mice and compared the phenotype to BDNF?/? and wild-type mice. Taste papillae morphology was severely distorted in BDNF?/?xNT-3?/? mice compared to single BDNF?/? and wild-type mice. The deficits were found throughout the tongue and all gustatory papillae. There was a significant loss of fungiform papillae and the papillae were smaller in size compared to BDNF?/? and wild-type mice. Circumvallate papillae in the double knockouts were smaller and did not contain any intraepithelial nerve fibers. BDNF?/?xNT-3?/? mice exhibited additive losses in both somatosensory and gustatory innervation indicating that BDNF and NT-3 exert specific roles in the innervation of the tongue. However, the additional loss of fungiform papillae and taste buds in BDNF?/?xNT-3?/? mice compared to single BDNF knockout mice indicate a synergistic functional role for both BDNF-dependent gustatory and NT-3-dependent somatosensory innervations in taste bud and taste papillae innervation and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号