首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The self-association of puromycin has been studied using proton magnetic resonance spectroscopy. The concentration, temperature and pH dependence studies of the proton chemical shifts of the adenine protons indicate that puromycin in aqueous solution at pD 7.4 self associates predominantly through adenine-adenine interaction. At this pD, the amino group of the aminoacyl segment of puromycin has been demonstrated to exist in a equilibrium blend of protonated and non-protonated forms. At pD 2.6, PM is found to exist predominantly in the monomeric from in which the methyl groups of the 6N-dimethyladenine are found to be non-equivalent due to hindered rotation about the C6-N6 bond.  相似文献   

2.
Complex formation between tryptamine and mononucleotides and dinucleoside phosphates containing adenine and/or cytosine has been studied at five pD's ranging from 1.1 to 7.4 by proton magnetic resonance spectroscopy. Chemical shifts of base ring protons and the ribose anomeric proton in the nucleotides and indole ring protons in tryptamine were monitored and their changes with pD and intermolecular interactions interpreted qualitatively. Stacked complexes were found to exist at all pD's in the range studied. Complex geometries differ depending on pD. An electrostatic interaction between the tryptamine amino group and the nucleotide phosphate group contributes to complex formation above pD 4 but is not strong enough to shift the dinucleoside phosphate equilibrium towards the unstacked conformer.  相似文献   

3.
Small-angle neutron scattering has been used to examine taxol-stabilized microtubules and other tubulin samples in both H(2)O and D(2)O buffers. Measurements were made at pH/pD values between 6.0 and 7.8, and observed scattered intensities, I(Q), have been interpreted in terms of multicomponent models of microtubules and related tubulin polymers. A semiquantitative curve fitting procedure has been used to estimate the relative amounts of the supramolecular components of the samples. At both pH and pD 7.0 and above, the tubulin polymers are seen to be predominantly microtubules. Although in H(2)O buffer the polymer distribution is little changed as the pH varies, when pD is lowered the samples appear to contain an appreciable amount of sheetlike structures and the average microtubule protofilament number increases from ca. 12.5 at pD > or = approximately 7.0 to ca. 14 at pD approximately 6.0. Such structural change indicates that analysis of microtubule solutions based on H(2)O/D(2)O contrast variation must be performed with caution, especially at lower pH/pD.  相似文献   

4.
The intramolecular conformation of puromycin, a broad spectrum antibiotic, in solution has been investigated by proton magnetic resonance (PMR) spectroscopy. A comparison of the proton chemical shift and proton-proton coupling constant data of puromycin with puromycin aminonucleoside suggests that puromycin in solution exists as an equilibrium blend of extended and folded conformers. These folded conformers are the result of flexibility around the C alpha -C beta bond of the aminoacyl segment of puromycin. One of the folded conformers predicted by PMR is in excellent agreement with the x-ray data.  相似文献   

5.
Nuclear magnetic resonance studies of histone IV solution conformation.   总被引:2,自引:0,他引:2  
The 220-MHz high-resolution proton magnetic resonance (PMR) spectrum of histone IV has been examined as a function of histone concentration, salt concentration, and pD. The hydrophobic C-terminal portion of the histone IV monomer appears to be largely PMR "invisible" indicating that this region of the polypeptide contains rigid secondary structure. Further loss of PMR resonance areas with increased histone IV concentration in neat D2O has been attributed to self-aggregation involving a monomer-dimer equilibrium. An equilibrium between the monomer and large aggregates, on the other hand, appears to dominate at NaCl concentrations above 0.01 M. pD studies reveal an abrupt increase in histone IV aggregation at pD smaller than 0.8 and precipitation of histone IV at pD values in the neighborhood of its isoelectric point, pD similar to 11.  相似文献   

6.
Abstract

The intramolecular conformation of puromycin, a broad spectrum antiobiotic, in solution has been investigated by proton magnetic resonance (PMR) spectroscopy. A comparison of the proton chemical shift and proton-proton coupling constant data of puromycin with puromycin aminonucleoside suggests that puromycin in solution exists as an equilibrium blend of extended and folded conformers. These folded conformers are the result of flexibility around the Cα-Cβ bond of the aminoacyl segment of puromycin. One of the folded conformers predicted by PMR is in excellent agreement with the x-ray data.  相似文献   

7.
The effect of N10-formyl-H4folate on mitochondrial peptide chain initiation has been studied in isolated mitochondria of Saccharomyces cerevisiae. The addition of N10-formyl-H4-folate strongly stimulates the incorporation of amino acids into mitochondrial protein at both 6 and 15 mm Mg2+. Still higher stimulation (up to 10-fold) has been obtained in the production of de novo synthesized initial peptides, measured as peptidyl puromycin derivatives. The maximum effect is observed at 0.1 mM N10-formyl-H4folate. At 5 mM puromycin, the ratio formylated/unformylated peptides is 3, as shown by electrophoretic analysis. At 10 mM puromycin, the ratio is increased to more than 6. This is due to the presence of deformylase and amidohydrolase activities, which are more effective the longer the initial peptide is synthesized; at increasing puromycin concentrations, progressively shorter peptide chains are formed. Chemically synthesized fMet-puromycin and Met-puromycin are virtually stable when incubated with intact or frozen and thawed mitochondria. More careful kinetic analysis shows an early cessation of the initial peptide formation in the samples without N10-formyl-H4-folate. This indicates that the formylation of methionyl-tRNA formylatable species is an absolute requirement for mitochondrial peptide chain initiation.  相似文献   

8.
The interaction of adenylyl (3′ → 5′) adenosine (ApA) with polyuridylic acid in D2O solution at neutral pD has been studied by high resolution proton magnetic, resonance spectroscopy. At temperatures above ~32°C, no evidence was obtained for the interaction of ApA with poly U. Below this temperature, a rigid triple-stranded complex involving a stoichiometry of 1 adenine to 2 uracil bases is formed, presumably via specific adenine–uracil base-pairing and cooperative base stacking of the adenine bases in a manner similar to that previously reported for the adenosine–poly U complex.  相似文献   

9.
Proton magnetic resonance spectra at 250 MHz were measured as a function of temperature and pH of the three guanosine phosphates. From these data and previously published work the conformational parameters of these compounds were determinated. The phosphate group of Guo-5'-P changes its conformation around the C-O bond and its rotation is relatively slow at 20 degrees. At neutral pD the S conformation is favoured and the N form at acid pD. This conformational change is paralleled by a change in exocyclic rotamer distribution and takes place at the pK of the protonation of the base on N-7. Although correlation appears to exist between the various conformations, notable exceptions exist.  相似文献   

10.
The interaction of unsubstituted purine with polyuridylic acid in D2O solution at neutral pD has been studied by high resolution proton magnetic resonance spectroscopy. The poly U proton resonances were shifted to higher fields by the added purine, indicating that purine binds to the uracil bases of the polymer by base stacking. Severe broadening of the purine proton resonances was also observed, providing strong evidence for the intercalation of purine between adjacent uracil bases of the polymer. The line widths of the poly U proton resonances were not noticeably broadened in the presence of purine; thus, the binding of purine to poly U does not result in a more rigid or ordered structure for the polymer.  相似文献   

11.
The substrate proton of the pyruvate kinase reaction   总被引:3,自引:0,他引:3  
I A Rose  D J Kuo 《Biochemistry》1989,28(25):9579-9585
The pyruvate kinase reaction occurs in separate phosphate- and proton-transfer stages: (formula; see text) K+, Mg2+, and Mg.ADP are known to be required for the phosphoryl transfer step, and K+ and Mg2+ with allosteric stimulation by MgATP are important for proton transfer. This paper uses the isotope trapping method with 3H-labeled water to identify the proton donor and determine when in the sequence of the catalytic cycle it is generated. When the enzyme was allowed to exchange briefly with 3H2O (pulse phase) and then diluted into a mixture containing PEP, ADP, and the cofactor K+, Mg2+, or Co2+ in D2O (chase phase), an amount of [3H]pyruvate was formed in great excess of the amount expected from steady-state catalysis in the diluted 3H-labeled water. With K+, Mg2+, and ADP at pH 6-9.5 in the pulse phase, a limit of 1.25 enzyme equiv of 3H were trapped. The concentration of PEP required for half-maximum trapping was 14-fold greater than its steady-state Km. Therefore, the rate constant for dissociation of the donor proton is estimated to be 14 times the steady-state rate of [3H]pyruvate formation, approximately 109 s-1, or 1500 s-1. At pD 6.4, Mg2+ and ADP were required in the chase, indicating that the ADP in the pulse was not bound tightly enough to be used in the chase. At pD 9.4, ADP was not required in the chase, only Mg2+ or Co2+, making it possible to limit the chase to one turnover from hybrid labeled complexes such as E.K.Mg.CoADP or E.K.Co.MgADP and PEP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The interaction between N6-methyladenosine and polyuridylic acid in D2O solution at neutral pD has been studied as a function of temperature and N6-methyladenosine concentration by proton magnetic resonance spectroscopy. A rigid double-stranded 1:1 complex is formed below ~10°C, involving hydrogen-bonded N6-methyladenine:uracil base-pairing and stacking of the adenine bases. This complex is less stable than the 1:2 complex formed between adenosine and polyU, and involves a more rapid exchange of the monomer between free and polymer-bound environments.  相似文献   

13.
The dipeptide His-Pro isomerizes from all-s-trans to partly s-cis when titrated in D2O from acidic to neutral pD as observed by 13C and 1H nuclear magnetic resonance of the proline side chain. This isomerization is reported by the His C-2 and C-4 protons and carbons which show distinct, well-resolved resonances for each isomer. The influence of the His-Pro peptide bond rotational state on the histidine protons far removed from the bond has not been previously observed in model compounds or peptides. The peptides thyroliberin (TRH), [3-MeHis2]-TRH, and [3-MeHis6]-, [Sar1,Al8]-, and Nalpha-acetylangiotensin II were found to similarly isomerize from all-s-trans to partly s-cis as reported by their His C-2 and C-4 proton resonances. The His C-2 and C-4 protons in the peptides [1,3-diMeHis2]-TRH and [1-MeHis6]-, and [homoHis6]-angiotensin do not report this isomerization. Angiotensin II has previously been found to exhibit the same isomerization. The reporting of the s-trans to s-cis isomerization by the His C-2 proton appears to be correlated with the known potencies of the five angiotensin peptides in rat uterine strips and of the three TRH peptides by radioimmunoassay of released thyrotropin.  相似文献   

14.
The action of magnesium ion on the exchange rate of the proton in C2 of thiamine and thiamine diphosphate is studied at different values of pD. Above pD 5 the ion Mg2+ increases this exchange rate. The phenomenon is markedly enhanced for TDP rather than thiamine and increases with pD. Below pD 5 magnesium decreases the exchange rate. This decrease is greater for TDP than for thiamine. The maximum effect is reached at a magnesium concentration of 0.5/1 for thiamine and of 1/1 for TDP. T1 measurements are made for different pH values with and without magnesium ion. Results seem to prove that an increase in pD values from 3.9 to 5.9 leads to an accentuation of the molecules "folded" form. Nevertheless for a given pD value the TDP-Mg complex seems to have a more "folded" form than TDP.  相似文献   

15.
Li Y  Horng JC  Raleigh DP 《Biochemistry》2006,45(28):8499-8506
It is now recognized that unfolded states of globular proteins are not random coils but instead can contain significant amounts of residual structure. Here, we combine amide H/D exchange studies and thermodynamic measurements to probe pH dependent structure in the unfolded state of the small, mixed alpha-beta protein CTL9. The m value measured by urea denaturation is strongly dependent upon pD, increasing by 40% from pD 7.5 to 4.85. Likewise, the change in heat capacity upon unfolding, deltaCp(o), increases significantly from pD 7.5 to 5.5. These studies argue that the unfolded state contains interactions, presumably hydrophobic in nature, that lead to a more compact state at high pH. The expansion at lower pH correlates with the estimated unfolded state pKa values of the three histidines in CTL9 with additional contributions from acid side chains at the lower pH. Amide H/D exchange studies were conducted at pD 5.0, 6.0, and 7.0. At pD 5.0, the exchange rates could be measured for 44 residues, 29 of which exchanged by global unfolding. No evidence was found for any super protected sites, that is, sites that exchange at rates slower than those expected for global exchange. The estimated precision for the experiments limits detection to residues that are protected 2.3-fold above the intrinsic exchange rate. Thirty-seven residues could be followed at pD 6 and 27 residues at pD 7. Again no evidence for a significant super protected structure was observed. The properties of CTL9(11) are compared to other structured denatured states.  相似文献   

16.
Oligonucleotide-directed mutagenesis has been used to construct two mutant forms of iso-2-cytochrome c. In one, Pro-30 is replaced by threonine; in the other, Pro-76 is replaced by glycine. Both prolines are fully conserved among mitochondrial cytochromes c and play important structural and functional roles. Yeast with either the Pro-30 or the Gly-76 mutation has appreciable levels of mutant protein in vivo and grows on media containing nonfermentable carbon sources. Thus, neither mutation blocks protein targeting to mitochondria, uptake by mitochondria, covalent attachment of heme, or in vivo function. As judged by ultraviolet-visible spectrophotometry and proton nuclear magnetic resonance spectroscopy, the nativelike conformation of purified Gly-76 iso-2 at pH 6 is almost indistinguishable from that of the normal protein at pH 6. Ultraviolet second-derivative spectrophotometry, however, suggests an increase in the average number of exposed tyrosine side chains, with 2.25 out of 5 residues exposed for the mutant compared to 1.95 for normal iso-2. Above neutral pH, the protein folds to a mutant conformation possibly related to alkaline cytochrome c. Nuclear Overhauser difference spectroscopy of the reduced nativelike conformation allows assignment of several proton resonances and comparison of side-chain conformations of the heme ligand Met-80 in the mutant and the normal proteins. The proton chemical shifts for the assigned resonances are the same within errors for Gly-76 iso-2 and normal iso-2 at pD 6, 20 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The conformational properties of the magainin family of antimicrobial peptides in aqueous solution and in model membranes have been probed by Fourier transform infrared spectroscopy. The magainins were found to be structureless in aqueous solution at neutral pD, confirming other studies by Raman and circular dichroism spectroscopy. Increasing the pD to 10 induced the formation of predominantly alpha-helical secondary structures, with some beta-sheet. In the presence of negatively charged liposomes (dimyristoylphosphatidylglycerol), the peptides folded into alpha-helical secondary structures with some beta-sheet structure evident. On the other hand, in the presence of zwitterionic phospholipids (dimyristoylphosphatidylcholine), the spectra were identical to those in aqueous solution. For some magainins, the interaction with charged liposomes was modulated by the presence of cholesterol; cholesterol was found to promote the formation of beta-sheet structures, as evidenced by the appearance of amide I bands at 1614 and 1637 cm-1. Differences in structure were observed between the amidated and nonamidated forms of some peptides. From the data, a mechanism of antimicrobial action of the magainin family of peptides is proposed.  相似文献   

18.
The action of magnesium ion on the exchange rate of the proton in C2 of thiamine and thiamine diphosphate is studied at different values of pD. Above pD 5 the ion Mg2+ increases this exchange rate. The phenomenon is markedly enhanced for TDP rather than thiamine and increases with pD. Below pD 5 magnesium decreases the exchange rate. This decrease is greater for TDP than for thiamine. The maximum effect is reached at a magnesium concentration of 0.5/1 for thiamine and of 1/1 for TDP.T1 measurements are made for different pH values with and without magnesium ion. Results seem to prove that an increase in pD values from 3.9 to 5.9 leads to an accentuation of the molecules «folded form. Nevertheless for a given pD value the TDP-Mg complex seems to have a more «folded form than TDP.  相似文献   

19.
Hashimoto S  Takeuchi H 《Biochemistry》2006,45(32):9660-9667
Ultraviolet resonance Raman (UVRR) spectroscopy has been used to characterize the structure and hydrogen bonding state of the distal histidine (His42) in horseradish peroxidase (HRP) complexed with carbon monoxide (HRP-CO). The HRP-CO - HRP UVRR difference spectrum in D(2)O solution at pD 7.0 shows two positive peaks at 1408 and 1388 cm(-)(1), which are ascribable to medium-to-weak and strong hydrogen bonding states, respectively, of the protonated imidazolium side chain of His42 in HRP-CO. Both His42 peaks decrease in intensity with increase of pD with a midpoint of transition at pD 8.8, indicating that the pK(a) of His42 in HRP-CO is 8.8. The CO ligand exhibits two C-O stretching Raman peaks at 1932 and 1902 cm(-)(1), the latter of which diminishes at alkaline pD and is assignable to a strong hydrogen-bonded state. It is most probable that the imidazolium side chain of His42 forms a strong hydrogen bond with CO, giving a His42 peak at 1388 cm(-)(1) and a CO peak at 1902 cm(-)(1), in one conformer. The other hydrogen bonding state of His42, giving the 1408 cm(-)(1) peak, is ascribed to another conformer forming a medium-to-weak hydrogen bond with a water molecule in the distal cavity. The present finding that His42 can act as a strong proton donor to CO and decrease the CO bond order is consistent with the role of His42 as a general acid to cleave the O-O bond of hydrogen peroxide, a specific oxidizing agent, in the catalytic cycle of HRP.  相似文献   

20.
The enzyme mechanism of sialidase from influenza virus has been investigated by kinetic isotope methods, NMR, and a molecular dynamics simulation of the enzyme-substrate complex. Comparison of the reaction rates obtained with the synthetic substrate 4-methylumbelliferyl-N-acetyl-alpha-D-neuraminic acid and the [3,3-2H]-substituted substrate revealed beta-deuterium isotope effects for V/Km ranging over 1.09-1.15 in the pH range 6.0-9.5, whereas the effects observed for V in this pH range increased from 0.979 to 1.07. In D2O, beta DV/Km was slightly increased by 2% and 5% at pD 6.0 and 9.5 respectively, while beta DV was unchanged. Solvent isotope effects of 1.74 were obtained for both beta DV/Km and beta DV at pD 9.5, with beta DV/Km decreasing and beta DV remaining constant at acidic pD. 1H-NMR experiments confirmed that the initial product of the reaction is the alpha-anomer of N-acetyl-D-neuraminic acid. Molecular dynamics studies identified a water molecule in the crystal structure of the sialidase-N-acetyl-D-neuraminic acid complex which is hydrogen-bonded to Asp151 and is available to act as a proton donor source in the enzyme reaction. The results of this study lead us to propose a mechanism for the solvent-mediated hydrolysis of substrate by sialidase that requires the formation of an endocyclic sialosyl cation transition-state intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号