首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen reduction by isolated pea thylakoids was studied in the presence of ferredoxin (Fd), Fd + NADP, and cytochrome c. At Fd concentrations optimal for NADP reduction, it contributed 30–50% of the reducing equivalents (as deduced by comparing the rates of oxygen reduction and light oxidation of reduced Fd). The oxygen reduction rate in the presence of Fd + NADP was 3–4 times lower than with Fd alone, and comparable to that with cyt c. It is supposed that the process involves a photosystem I component whose reaction with oxygen depends on the rate of electron efflux from the PS I terminal acceptors, and that this component is phylloquinone.  相似文献   

2.
In addition to an inhibitory effect on the photoreduction of NADP+ by isolated spinach chloroplasts ( Spinacea oleracea L. cv. Melody Hybrid), sulfide initiated oxygen uptake by chloroplasts upon illumination, both in presence and absence of an electron acceptor. Sulfide-induced oxygen uptake was sensitive to DCMU demonstrating the involvement of photosynthetic electron transport. Addition of superoxide dismutase to the chloroplast suspension prevented the sulfide-induced oxygen uptake, which indicated that sulfide may be oxidized by the chloroplast, its oxidation being initiated by superoxide formed upon illumination (at the reducing side of PSI). Tris-induced inhibition of NADP+ photo-reduction could not be abolished by sulfide, which indicated that sulfide could not act as an electron donor for PSI.  相似文献   

3.
Tip-localized reactive oxygen species (ROS) were detected in growing pollen tubes by chloromethyl dichlorodihydrofluorescein diacetate oxidation, while tip-localized extracellular superoxide production was detected by nitroblue tetrazolium (NBT) reduction. To investigate the origin of the ROS we cloned a fragment of pollen specific tobacco NADPH oxidase (NOX) closely related to a pollen specific NOX from Arabidopsis. Transfection of tobacco pollen tubes with NOX-specific antisense oligodeoxynucleotides (ODNs) resulted in decreased amount of NtNOX mRNA, lower NOX activity and pollen tube growth inhibition. The ROS scavengers and the NOX inhibitor diphenylene iodonium chloride (DPI) inhibited growth and ROS formation in tobacco pollen tube cultures. Exogenous hydrogen peroxide (H2O2) rescued the growth inhibition caused by NOX antisense ODNs. Exogenous CaCl2 increased NBT reduction at the pollen tube tip, suggesting that Ca2+ increases the activity of pollen NOX in vivo. The results show that tip-localized ROS produced by a NOX enzyme is needed to sustain the normal rate of pollen tube growth and that this is likely to be a general mechanism in the control of tip growth of polarized plant cells.  相似文献   

4.
Copper deficiency in wheat ( Triticum aestivum L. cv. Nazareno Stramppeli) markedly affects photosynthetic activity. Flag leaves of copper-deficient plants showed a 50% reduction of the photosynthetic rate expressed as mg CO2 dm−2h−1. The activities of PSI and PSII, determined for isolated chloroplasts, as well as fluorescence measurements on intact leaves of copper-deficient plants, indicated a low activity of photosynthetic electron transport. Ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity was not affected by copper deficiency but copper deficiency affected the chloroplast ultrastructure, especially at the level of grana, where a disorganization of thylakoids is evident.  相似文献   

5.
We explore the possibility of virtual transfer in the primary charge separation of photosynthetic bacteria within the context of several types of experimental data. We show that the peak that might be expected in the virtual rate as electric fields vary the intermediate state energy is severely broadened by coupling to high-frequency modes. The Stark absorption kinetics data are thus consistent with virtual transfer in the primary charge separation. High-frequency coupling also makes the temperature dependence weak over a wide range of parameters. We demonstrate that Stark fluorescence anisotropy data, usually taken as evidence of virtual transfer, can in fact be consistent with two-step transfer. We suggest a two-pulse excitation experiment to quantify the contributions from two-step and virtual transfer. We show that virtual absorption into a charge transfer state can make a substantial contribution to the Stark absorption spectrum in a way that is not related to any derivative of the absorption spectrum.  相似文献   

6.
B. Meier 《Protoplasma》2001,217(1-3):101-116
Summary Reactive oxygen intermediates (ROIs) in low concentration, as released permanently by nonphagocytic cells, possess important functions in inter- and intracellular signalling. They lead to alterations in the phosphorylation pattern followed by gene activation, including the expression of proto-oncogenes. Redox-sensitive sites in membrane molecules may trigger adhesion and chemotaxis or open ion channels and activate transport processes across the cytoplasma membrane. ROIs shift the ratio of cyclic GMP to cyclic AMP giving signals to proliferation and differentiation processes. Senescence, apoptosis, and cell death can also be modulated by ROIs, depending on concentration and cell type.Abbreviations CAT catalase - DPI diphenylene iodonium - SOD superoxide dismutase - ROI reactive oxygen intermediate  相似文献   

7.
We investigate the role of plastoquinone (PQ) diffusion in the control of the photosynthetic electron transport. A control analysis reveals an unexpected flux control of the whole chain electron transport by photosystem (PS) II. The contribution of PSII to the flux control of whole chain electron transport was high in stacked thylakoids (control coefficient, CJ(PSII) =0.85), but decreased after destacking (CJ(PSII)=0.25). From an 'electron storage' experiment, we conclude that in stacked thylakoids only about 50 to 60% of photoreducable PQ is involved in the light-saturated linear electron transport. No redox equilibration throughout the membrane between fixed redox groups at PSII and cytochrome (cyt) bf complexes, and the diffusable carrier PQ is achieved. The data support the PQ diffusion microdomain concept by Lavergne et al. [J. Lavergne, J.-P. Bouchaud, P. Joliot, Biochim. Biophys. Acta 1101 (1992) 13-22], but we come to different conclusions about size, structure and size distribution of domains. From an analysis of cyt b6 reduction, as a function of PSII inhibition, we conclude that in stacked thylakoids about 70% of PSII is located in small domains, where only 1 to 2 PSII share a local pool of a few PQ molecules. Thirty percent of PSII is located in larger domains. No small domains were found in destacked thylakoids. We present a structural model assuming a hierarchy of specific, strong and weak interactions between PSII core, light harvesting complexes (LHC) II and cyt bf. Peripheral LHCII's may serve to connect PSII-LHCII supercomplexes to a flexible protein network, by which small closed lipid diffusion compartments are formed. Within each domain, PQ moves rapidly and shuttles electrons between PSII and cyt bf complexes in the close vicinity. At the same time, long range diffusion is slow. We conclude, that in high light, cyt bfcomplexes located in distant stromal lamellae (20 to 30%) are not involved in the linear electron transport.  相似文献   

8.
Changes in the osmolarity of the airway surface fluid have been described to be involved in the pathogenesis of exercise induced asthma, and are suggested as the major cause of the lung disease in cystic fibrosis. In this study, we examined the signaling pathway of hyperosmotic challenge to interleukin-8 (IL-8). Hyperosmolarity (NaCl) caused a time- and concentration-dependent increase in IL-8 expression and secretion in bronchial epithelial cells. These effects could be blocked by antioxidants, such as DMSO, DMTU, DTT, and beta-mercaptoethanol, suggesting an involvement of reactive oxygen intermediates (ROI) in the signal transduction of hyperosmolarity-induced IL-8 synthesis. Since IL-8 is regulated by MAP kinases, we examined the influence of MAP kinase inhibitors on hyperosmolarity-induced IL-8 expression. The results show that this induction is regulated by p38 MAPK and not by ERK1/2. Furthermore, antioxidants blocked the activation of p38 MAPK induced by hyperosmolarity. These results suggest that ROIs are critical for p38 MAPK mediated IL-8 expression by hyperosmolarity.  相似文献   

9.
This study deals with effects of oxygen on the kinetics of P(700) photoinduced redox transitions and on induction transients of chlorophyll fluorescence in leaves of C(3) plants Hibiscus rosa-sinensis and Vicia faba. It is shown that the removal of oxygen from the leaf environment has a conspicuous effect on photosynthetic electron transport. Under anaerobic conditions, the concentration of oxidized P700 centers in continuous white light was substantially lower than under aerobic conditions. The deficiency of oxygen released non-photochemical quenching of chlorophyll fluorescence, thus indicating a decrease in the trans-thylakoid pH gradient (DeltapH). Quantitative analysis of experimental data within the framework of an original mathematical model has shown that the steady-state electron flux toward oxygen in Chinese hibiscus leaves makes up to approximately 40% of the total electron flow passing through photosystem 1 (PS1). The decrease in P700+ content under anaerobic conditions can be due to two causes: i) the retardation of electron outflow from PS1, and ii) the release of photosynthetic control (acceleration of electron flow from PS2 to P700+) owing to lower acidification of the intra-thylakoid space. At the same time, cyclic electron transport around PS1 was not stimulated in the oxygen-free medium, although such stimulation seemed likely in view of possible rearrangement of electron flows on the acceptor side of PS1. This conclusion stems from observations that the rates of P700+ reduction in DCMU-poisoned samples, both under aerobic and anaerobic conditions, were negligibly small compared to rates of electron flow from PS2 toward P700+ in untreated samples.  相似文献   

10.
KCN-treated spinach chloroplasts, their photosystem I being ineffective, exhibit a single reaction site for silicomolybdate. Using this heteropolyanion as electron acceptor, photosynthetic oxygen evolution is partially inhibited by ureas, triazines, or phenylpyridazinone herbicides, their inhibitory effect depending on the concentration of silicomolybate. Labelled atrazine attached to isolated chloroplast material is competitively replaced by silicomolybdate in the same manner as e.g. ureas complete with a triazine herbicide. – It is concluded (1) that silicomolybdate is bound and reduced at the herbicide-binding protein, and (2) that the inhibition of silicomolybdate reduction by herbicides such as DCMU is due to loss of reaction sites for silicomolybdate.  相似文献   

11.
Light-dependent inhibition of photosynthetic electron transport by zinc   总被引:2,自引:0,他引:2  
The effects of zinc concentrations up to 400 μ M were examined on three photosynthetic electron transport reactions of thylakoids isolated from Pisum sativum L. cv. Meteor. Zinc (400 μ M ) had no effect on photosystem I mediated electron transport from reduced N,N,N',N'-tetramethyl- p -phenylenediamine to methyl viologen, but inhibited uncoupled electron flow from water to methyl viologen by ca 50% and to 2,6-dichlorophenol-indophenol (DCPIP) by ca 30% at saturating light levels. Zinc inhibition of DCPIP photoreduction was independent of the light intensity to which thylakoids were exposed. Decreasing the photon flux density below 400 μmol m−2 s−1 produced a logarithmic reduction in the zinc-induced inhibition of methyl viologen photoceduction; a stimulation of this reaction was observed below 80 μmol photons m−2 s−1. Increasing light intensity decreased the amount of zinc tightly bound to the thylakoid membranes, but increased the weakly associated zinc which could be removed by washing the membranes with buffer containing Mg2. The results suggest that zinc acts on the photosynthetic electron transport system at two sites. Site 1 is on the oxidizing side of photosystem 2 and the inhibition by zinc is independent of the light intensity. Site 2 is between photosystems 1 and 2 and the electron flow can be positively or negatively affected by zinc depending on the light intensity.  相似文献   

12.
By assaying partial reactions of the photosynthetic electron transport system using thylakoids from spinach as well as from the algae Bumilleriopsis, Dunaliella , and Anabaena , it was demonstrated that the polyene antibiotic amphotericin B has no specific effect on plastocyanin. Pretreating spinach and algal thylakoids with this antibiotic decreased photosystem-II as well as photosystem-I activity regardless of whether the membranes contained plastocyanin or cytochrome c-553. Different sensitivity of cell-free electron transport activity against this antibiotic was observed due to the species used. With Dunaliella , the photosystem-II region was inhibited more strongly than photosystem-I, while Bumilleriopsis chloroplasts – although not containing plastocyanin – exhibited a stronger inhibition of the photosystem-I region. Apparently, amphotericin B mainly solubilizes redox compounds that form connecting pools in the photosynthetic electron transport chain.  相似文献   

13.
14.
Photosynthetic electron transport drives the carbon reduction cycle, the carbon oxidation cycle, and any alternative electron sinks such as nitrogen reduction. A chlorophyll fluorescence— based method allows estimation of the total electron transport rate while a gas-exchange-based method can provide estimates of the electron transport needed for the carbon reduction cycle and, if the CO2 partial pressure inside the chloroplast is accurately known, for the carbon oxidation cycle. The gas-exchange method cannot provide estimates of alternative electron sinks. Photosynthetic electron transport in flag leaves of wheat was estimated by the fluorescence method and gasexchange method to determine the possible magnitude of alternative electron sinks. Under non-photorespiratory conditions the two measures of electron transport were the same, ruling out substantial alternative electron sinks. Under photorespiratory conditions the fluorescence-based electron transport rate could be accounted for by the carbon reduction and carbon oxidation cycle only if we assumed the CO2 partial pressure inside the chloroplasts to be lower than that in the intercellular spaces of the leaves. To further test for the presence of alternative electron sinks, carbon metabolism was inhibited by feeding glyceraldehyde. As carbon metabolism was inhibited, the electron transport was inhibited to the same degree. A small residual rate of electron transport was measured when carbon metabolism was completely inhibited which we take to be the maximum capacity of alternative electron sinks. Since the alternative sinks were small enough to ignore, the comparison of fluorescence and gas-exchange based methods for measuring the rate of electron transport could be used to estimate the mesophyll conductance to CO2 diffusion. The mesophyll conductance estimated this way fell as wheat flag leaves senesced. The age-related decline in photosynthesis may be attributed in part to the reduction of mesophyll conductance to CO2 diffusion and in part to the estimated decline of ribulose 1,5-bisphosphate carboxylase amount.  相似文献   

15.
温度变化对藻类光合电子传递与光合放氧关系的影响   总被引:2,自引:0,他引:2  
张曼  曾波  张怡  韩博平 《生态学报》2010,30(24):7087-7091
由于直接测定藻类的光合速率耗时且不方便,研究者们常通过测定藻类光合电子传递速率的方式来间接反映其光合速率,理论上,以氧气产生来度量的总光合速率(PGross)与电子传递速率(ETR)之间应该存在很好的线性关系。然而,由于温度的变化会影响藻类的光呼吸等耗氧的生理过程从而影响光合作用中的氧气释放,因此温度可能会对PGross与ETR之间的线性关系产生影响。研究了温度变化对蛋白核小球藻(Cholorella pyrenoidosa)、菱形藻(Nitzschia sp.)和水生集胞藻(Synechocystis aquetilis Sauv.)的总光合放氧速率(PGross)与电子传递速率(ETR)之间比率的影响,结果表明PGross/ETR随温度的升高而降低,低温条件下PGross/ETR比值较高,说明在相同的电子传递速率的情况下水的光裂解产生的氧有更多的可以释放出来;在高温条件下PGross/ETR比值相对较低,说明高温条件下可能有相对更多的水光裂解产生的氧被用于耗氧的生理过程而没有释放出来。研究表明当温度发生变化时,光合放氧与电子传递之间并不呈线性关系,这说明将ETR作为实际光合生产的评价指标时要谨慎,不能不加分析地直接应用。  相似文献   

16.
The diffusion of plastoquinol and its binding to the cytochrome bf complex, which occurs during linear photosynthetic electron transport and is analogous to reaction sequences found in most energy-converting membranes, has been studied in intact thylakoid membranes. The flash-induced electron transfer between the laterally separated photosystems II and photosystems I was measured by following the sigmoidal reduction kinetics of P-700+ after previous oxidation of the intersystem electron carriers. The amount of flash-induced plastoquinol produced at photosystem II was (a) reduced by inhibition with dichlorophenyl-dimethylurea and (b) increased by giving a second saturating flash. These signals were simulated by a new model which combines a deterministic simulation of reaction kinetics with a Monte Carlo approach to the diffusion of plastoquinol, taking into account the known structural features of the thylakoid membrane. The plastoquinol molecules were assumed to be oxidized by either a diffusion-limited or a nondiffusion-limited step in a collisional mechanism or after binding to the cytochrome bf complex. The model was able to account for the experimental observations with a nondiffusion-limited collisional mechanism or with a binding mechanism, giving minimum values for the diffusion coefficient of plastoquinol of 2 × 10-8 cm2s-1 and 3 × 10-7 cm2s-1, respectively.  相似文献   

17.
The effects of the diphenyl ether herbicides HOE 29152 (methyl-2[4-(4-trifluoromethoxy) phenoxy] propanoate) and nitrofluorfen (2-chloro-1-[4-nitrophenoxy]-4-[trifluoromethyl]benzene) on photosynthetic electron transport have been examined with pea seedling and spinach chloroplasts. Linear electron transport (water to ferricyanide or methylviologen) is inhibited in treated chloroplasts, but neither photosystem II activity (water to dimethylquinone plus dibromothymoquinone) nor photosystem I activity (diaminodurene to methylviologen) is affected. Cyclic electron flow, cata-lyzed by either phenazine methosulfate or diaminodurene, is resistant to inhibition by nitrofluorfen. In diphenyl ether-treated chloroplasts the half-time for the dark reduction of cytochrome f is increased 5- to 15-fold. These data indicate that the site of inhibition for the diphenyl ethers is between the two photosystems in the plastoquinone-cytochrome f region.  相似文献   

18.
The effect of methyl parathion (metacid-50), an organophosphorous insecticide, on the Hill reactions of isolated mesophyll chloroplasts ofSorghum vulgare was studied. The pesticide was found to inhibit the Hill reaction with all the Hill oxidants tested, namely potassium ferricyanide,2,6-dichlorophenol indophenol and para-benzoquinone. The concentration of the pesticide required to inhibit 50% of the control Hill activity (I50value) was found to vary with the different Hill oxidants.  相似文献   

19.
The effect of DDT and DDE (a metabolite of DDT) on chloroplast electron transport was investigated. Photosynthetic electron transport in isolated spinach and barley chloroplasts as well as chloroplasts isolated from macroscopic green algae,Cdium fragile andChaetomorpha aerea, was inhibited by both compounds. Photoreduction and photophosphorylation measured in the presence of ferricyanide showed 50% inhibition at 2×10–5 M DDT and DDE. P/2e ratios were 1·2–1·5, and remained constant in the presence of both inhibitors. The addition of uncouplers such as ammonium ion and carbonyl cyanide,m-chlorophenylhydrazone did not overcome the inhibition of the chlorinated hydrocarbons. Inhibition of phenazine methosulfate-catalyzed cyclic photophosphorylation by DDT and DDE was observed at low light intensities but was not seen at 2·5×105 erg cm–2sec–1 and above. In the presence of DDT, a slow rise in measuring beam fluorescence was observed. The actinic beam fluorescence was slightly less than that in the control. Inhibition by DDT and DDE appears to be similar to that of DCMU. Brief sonication of the chloroplasts increases the sensitivity to DDT. The lack of penetration of DDT to terrestrial plant chloroplasts may be the reason why these are protected from this insecticide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号