首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epigenetic states and certain environmental responses in mammals and seed plants can persist in the next sexual generation. These transgenerational effects have potential adaptative significance as well as medical and agronomic ramifications. Recent evidence suggests that some abiotic and biotic stress responses of plants are transgenerational. For example, viral infection of tobacco plants and exposure of Arabidopsis thaliana plants to UVC and flagellin can induce transgenerational increases in homologous recombination frequency (HRF). Here we show that exposure of Arabidopsis plants to stresses, including salt, UVC, cold, heat and flood, resulted in a higher HRF, increased global genome methylation, and higher tolerance to stress in the untreated progeny. This transgenerational effect did not, however, persist in successive generations. Treatment of the progeny of stressed plants with 5-azacytidine was shown to decrease global genomic methylation and enhance stress tolerance. Dicer-like (DCL) 2 and DCL3 encode Dicer activities important for small RNA-dependent gene silencing. Stress-induced HRF and DNA methylation were impaired in dcl2 and dcl3 deficiency mutants, while in dcl2 mutants, only stress-induced stress tolerance was impaired. Our results are consistent with the hypothesis that stress-induced transgenerational responses in Arabidopsis depend on altered DNA methylation and smRNA silencing pathways.  相似文献   

2.
Plant response to stress has been linked to different RNA-silencing processes and epigenetic mechanisms. Our recent results showed that Arabidopsis thaliana Dicer-like (DCL) mutants were impaired in transgenerational changes, recombination frequency and stress tolerance. We also found that transgenerational changes were dependent on changes in DNA methylation. Here, we hypothesized that plants deficient in the production of small RNAs would show an impaired abiotic stress response. To test this, we exposed A. thaliana dcl2, dcl3, dcl4, dcl2 dcl3 (d2d3), dcl2 dcl4 (d2d4), dcl2 dcl3 dcl4 (d2d3d4), nrpd1a, rdr2 and rdr6 mutants to methyl methane sulfonate (MMS). We found dcl4 and rdr6 to be more sensitive and dcl2, dcl3, d2d3 and rdr2 plants more resistant to MMS, as shown by fresh weight, root length and survival rate. The in vitro repair assay showed the lower ability of dcl2 and dcl3 to repair UV-damaged DNA. To summarize, we found that whereas mutants impaired in transactivating siRNA biogenesis were more sensitive to MMS, mutants impaired in natural antisense siRNA and heterochromatic siRNA biogeneses were more tolerant. Our data suggest that plant response to MMS is in part regulated through biogenesis of various siRNAs.  相似文献   

3.
Dicer proteins are central to the different mechanisms involving RNA interference. Plants have evolved multiple DICER‐LIKE (DCL) copies, thus enabling functional diversification. In Arabidopsis, DCL2 and DCL4 process double‐stranded RNA into 22 and 21 nucleotide small interfering (si)RNAs, respectively, and have overlapping functions with regards to virus and transgene silencing. Nonetheless, some studies have reported that dcl2 or dcl4 single mutations are sometimes sufficient to hinder silencing. To better dissect the role of DCL2 and DCL4, we analyzed silencing kinetics and efficiencies using different transgenic systems in single and double mutant backgrounds. The results indicate that DCL2 stimulates transitivity and secondary siRNA production through DCL4 while being sufficient for silencing on its own. Notably, silencing of 35S‐driven transgenes functions more efficiently in dcl4 mutants, indicating that DCL4 mostly obscures DCL2 in wild‐type plants. Nonetheless, in a dcl4 mutant compromised in phloem‐originating silencing, ectopically expressed DCL2 allows restoration of silencing, suggesting that DCL2 is not, or poorly, expressed in phloem. Remarkably, this ectopic DCL2 contribution to phloem‐originating silencing is dependent on the activity of RNA‐DEPENDENT RNA POLYMERASE6. These results indicate that, despite differences in the silencing activity of their small RNA products, DCL2 and DCL4 mostly act redundantly yet hierarchically when present simultaneously.  相似文献   

4.
Arabidopsis encodes four DICER-like (DCL) proteins. DCL1 produces miRNAs, DCL2 produces some virus-derived siRNAs, and DCL3 produces endogenous RDR2-dependent siRNAs, but the role of DCL4 is unknown. We show that DCL4 is the primary processor of endogenous RDR6-dependent trans-acting siRNAs (tasiRNAs). Molecular and phenotypic analyses of all dcl double mutants also revealed partially compensatory functions among DCL proteins. In the absence of DCL4, some RDR6-dependent siRNAs were produced by DCL2 and DCL3, and in the absence of DCL3, some RDR2-dependent siRNAs were produced by DCL2 and DCL4. Consistent with partial redundancies, dcl2 and dcl3 mutants developed normally, whereas dcl4 and dcl3 dcl4 mutants had weak and severe rdr6 phenotypes, respectively, and increased tasiRNA target mRNA accumulation. After three generations, dcl3 dcl4 and dcl2 dcl3 mutants exhibited stochastic developmental phenotypes, some of which were lethal, likely owing to the accumulated loss of heterochromatic siRNA-directed marks. dcl1 dcl3 and dcl1 dcl4, but not dcl1 dcl2 mutants, had phenotypes more severe than dcl1 mutants, consistent with DCL1, DCL3, and DCL4 acting as the primary processors of the three respective classes of endogenous silencing RNAs and DCL2 acting to produce viral-derived siRNAs and as an alternative DCL for endogenous siRNA production.  相似文献   

5.
6.
Liu B  Chen Z  Song X  Liu C  Cui X  Zhao X  Fang J  Xu W  Zhang H  Wang X  Chu C  Deng X  Xue Y  Cao X 《The Plant cell》2007,19(9):2705-2718
MicroRNAs and small interfering RNAs (siRNAs) are two classes of small regulatory RNAs derived from different types of precursors and processed by distinct Dicer or Dicer-like (DCL) proteins. During evolution, four Arabidopsis thaliana DCLs and six rice (Oryza sativa) DCLs (Os DCLs) appear to have acquired specialized functions. The Arabidopsis DCLs are well characterized, but those in rice remain largely unstudied. Here, we show that both knockdown and loss of function of rice DCL4, the homolog of Arabidopsis DCL4, lead to vegetative growth abnormalities and severe developmental defects in spikelet identity. These phenotypic alterations appear to be distinct from those observed in Arabidopsis dcl4 mutants, which exhibit accelerated vegetative phase change. The difference in phenotype between rice and Arabidopsis dcl4 mutants suggests that siRNA processing by DCL4 has a broader role in rice development than in Arabidopsis. Biochemical and genetic analyses indicate that Os DCL4 is the major Dicer responsible for the 21-nucleotide siRNAs associated with inverted repeat transgenes and for trans-acting siRNA (ta-siRNA) from the endogenous TRANS-ACTING siRNA3 (TAS3) gene. We show that the biogenesis mechanism of TAS3 ta-siRNA is conserved but that putative direct targets of Os DCL4 appear to be differentially regulated between monocots and dicots. Our results reveal a critical role of Os DCL4-mediated ta-siRNA biogenesis in rice development.  相似文献   

7.
Plants contain more DICER-LIKE (DCL) enzymes and double-stranded RNA binding (DRB) proteins than other eukaryotes, resulting in increased small RNA network complexities. Analyses of single, double, triple and quadruple dcl mutants exposed DCL1 as a sophisticated enzyme capable of producing both microRNAs (miRNAs) and siRNAs, unlike the three other DCLs, which only produce siRNAs. Depletion of siRNA-specific DCLs results in unbalanced small RNA levels, indicating a redeployment of DCL/DRB complexes. In particular, DCL2 antagonizes the production of miRNAs and siRNAs by DCL1 in certain circumstances and affects development deleteriously in dcl1 dcl4 and dcl1 dcl3 dcl4 mutant plants, whereas dcl1 dcl2 dcl3 dcl4 quadruple mutant plants are viable. We also show that viral siRNAs are produced by DCL4, and that DCL2 can substitute for DCL4 when this latter activity is reduced or inhibited by viruses, pointing to the competitiveness of DCL2. Given the complexity of the small RNA repertoire in plants, the implication of each DCL, in particular DCL2, in the production of small RNAs that have no known function will constitute one of the next challenges.  相似文献   

8.
Formation of microRNA (miRNA) requires an RNaseIII domain-containing protein, termed DICER-1 in animals and DICER-LIKE1 (DCL1) in plants, to catalyze processing of an RNA precursor with a fold-back structure. Loss-of-function dcl1 mutants of Arabidopsis have low levels of miRNA and exhibit a range of developmental phenotypes in vegetative, reproductive, and embryonic tissues. In this paper, we show that DCL1 mRNA occurs in multiple forms, including truncated molecules that result from aberrant pre-mRNA processing. Both full-length and truncated forms accumulated to relatively low levels in plants containing a functional DCL1 gene. However, in dcl1 mutant plants, dcl1 RNA forms accumulated to levels several-fold higher than those in DCL1 plants. Elevated levels of DCL1 RNAs were also detected in miRNA-defective hen1 mutant plants and in plants expressing a virus-encoded suppressor of RNA silencing (P1/HC-Pro), which inhibits miRNA-guided degradation of target mRNAs. A miRNA (miR162) target sequence was predicted near the middle of DCL1 mRNA, and a DCL1-derived RNA with the properties of a miR162-guided cleavage product was identified and mapped. These results indicate that DCL1 mRNA is subject to negative feedback regulation through the activity of a miRNA.  相似文献   

9.
10.
11.
12.
13.
MicroRNAs (miRNAs) act as down-regulators of gene expression, and play a dominant role in eukaryote development. In Arabidopsis thaliana, DICER-LIKE 1 (DCL1) is the main processor in miRNA biogenesis, and dcl1 mutants show various developmental defects at the early stage of embryogenesis or at gamete formation. However, miRNAs responsible for the respective developmental stages of the dcl1 defects have not been identified. Here, we developed a DCL1-independent miRNA expression system using the unique DCL4-dependent miRNA, miR839. By replacing the mature sequence in the miR839 precursor sequence with that of miR172, one of the most widely conserved miRNAs in angiosperms, we succeeded in expressing miR172 from a chimeric miR839 precursor in dcl1-7 plants and observed the repression of miR172 target gene expression. In parallel, the DCL4-dependent miR172 expression rescued the late flowering phenotype of dcl1-7 by acceleration of flowering. We established the DCL1-independent miRNA expression system, and revealed that the reduction of miR172 expression is responsible for the dcl1-7 late flowering phenotype.  相似文献   

14.
In the model plant Arabidopsis thaliana, four Dicer‐like proteins (DCL1–4) mediate the production of various classes of small RNAs (sRNAs). Among these four proteins, DCL4 is by far the most versatile RNaseIII‐like enzyme, and previously identified dcl4 missense alleles were shown to uncouple the production of the various classes of DCL4‐dependent sRNAs. Yet little is known about the molecular mechanism behind this uncoupling. Here, by studying the subcellular localization, interactome and binding to the sRNA precursors of three distinct dcl4 missense alleles, we simultaneously highlight the absolute requirement of a specific residue in the helicase domain for the efficient production of all DCL4‐dependent sRNAs, and identify, within the PAZ domain, an important determinant of DCL4 versatility that is mandatory for the efficient processing of intramolecular fold‐back double‐stranded RNA (dsRNA) precursors, but that is dispensable for the production of small interfering RNAs (siRNAs) from RDR‐dependent dsRNA susbtrates. This study not only provides insights into the DCL4 mode of action, but also delineates interesting tools to further study the complexity of RNA silencing pathways in plants, and possibly other organisms.  相似文献   

15.
Arabidopsis thaliana encodes four Dicer-like (DCL) proteins and five dsRNA-binding (DRB) proteins. We have previously demonstrated that DCL4 specifically interacts with DRB4 in vitro. Here we describe the interaction between DCL4 and DRB4 in vivo. The phenotype of a mutant with a defect in DCL4 (dcl4-2) was similar to that of a mutant with a defect in DRB4 (drb4-1): both mutant plants had elongated and downwardly curled rosette leaves and over-accumulated anthocyanin. In immunoprecipitation experiments with either anti-DCL4 or anti-DRB4 antibody and crude extracts of wild-type Arabidopsis plants, co-immunoprecipitation of DCL4 and DRB4 was detected, indicating that DCL4 interacts with DRB4 in vivo. This interaction was confirmed by immunoprecipitation experiments using extracts from dcl4-2, drb4-1, or transgenic plants expressing the hemagglutinin-tagged version of DCL4 or DRB4. The results of immunoprecipitation experiments also suggest that most DCL4 is associated with DRB4, but that some DRB4 is free or associated with other proteins. Reduced accumulation of the TAS1 and TAS3 trans-acting siRNA (ta-siRNA) and over accumulation of their target mRNAs (At5g18040 and auxin response factors ARF3 and ARF4) were detected in both drb4-1 and dcl4-2 mutants. These results indicate that DRB4, together with DCL4, functions in the ta-siRNA biogenesis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Yukihiro Nakazawa and Akihiro Hiraguri contributed equally to this work.  相似文献   

16.
17.
18.
19.
Cross‐protection has been used successfully and commercially to control a range of virus diseases for which the selection of suitable mild strains of plant viruses is necessary. Turnip crinkle virus (TCV) is highly pathogenic on Arabidopsis plants and its silencing suppressor‐defective mutant, TCVΔCP, can induce highly localized RNA silencing which is differs from that of other protective strains. We found that TCVΔCP provides some protection against wild‐type TCV but lacks complete protection, and the relative locations of the protective virus and challenge virus affect the degree of cross‐protection. However, similar cross‐protection afforded by TCVΔCP is not observed in Nicotiana benthamiana plants. As expected, TCVΔCP pre‐infected Arabidopsis plants fail to protect against infection with the unrelated Cucumber mosaic virus, strain Fhy. It appears that cross‐protection afforded by TCVΔCP requires that the challenge virus be very similar in sequence, which is a characteristic of RNA silencing. In order to investigate whether the protection is associated with the highly localized RNA silencing, mutant plants involved in key silencing pathway genes of RNA silencing machinery, including dcl2, dcl4 and triple dcl2/dcl3/dcl4 mutants were used. The results demonstrate that cross‐protection afforded by TCVΔCP is dependent on host RNA silencing, and both DCL2 and DCL4 play important roles in this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号