首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Summary Adhesive interactions of trophoblast cells with the endometrium are essential for embryo implantation in the uterus. Choriocarcinoma cells, the malignant counterpart of trophoblast, show pronounced invasiveness and are of interest for model studies. We describe here an in vitro model system for the study of adhesion of human JAR choriocarcinoma multicellular spheroids to different human endometrial epithelial cell lines (RL95-2, HEC-1A, KLE, AN3-CA) grown as monolayers. Cell characterization showed JAR spheroids to secrete the placental hormones human chorionic gonadotropin and progesterone into the culture medium; distinct patterns of keratin, vimentin, and uvomorulin expression were seen in the endometrial cell lines. Spheroid attachment to endometrial monolayers was quantified using a centrifugal force-based adhesion assay, and morphology was examined by light and electron microscopy. Results showed the JAR spheroids to attach to three of the endometrial monolayers (RL95-2, HEC-1A, KLE) progressively over a 24-h period (by which time ≥80% of the spheroids attached). Significant differences in spheroid attachment were most pronounced at 5 h (RL95-2 > HEC-1A > KLE and poly-d-lysine control, i.e. 90:45:17:17% attached). JAR spheroids did not attach to the endometrial cell line AN3-CA. Morphology revealed choriocarcinoma cells to begin to intrude between the uterine RL95-2 epithelial cells at 5 h. At 24 h, this intrusive type of penetration continued to be seen only with the RL95-2 monolayer. The assay system thus identifies differences in attachment properties between choriocarcinoma cells and various endometrial cell lines and forms the basis for further studies on the molecular interactions involved.  相似文献   

2.
The complex implantation process is initiated by the recognition and adhesion between the embryo and uterine endometrial epithelium. The expression and interactions between the adhesive molecules from both fetal and maternal sides are crucial for the successful implantation. In this study, we aimed to investigate the expression and adhesive function of sLeX on the trophoblasts and L-selectin on uterine epithelial cells mediated the adhesion at the fetal-maternal interface, and to further explore whether this adhesion system could induce endometrial apoptosis, using in vitro implantation model consisting of the human trophoblast cell line (JAR) and human uterine epithelial cell line (RL95-2). The results showed that sLeX was expressed on JAR cells by indirect immunofluorescence staining. After transfection of JAR cells with fucosyltransferase VII (FUT7) which is the key enzyme for sLeX synthesis, the expression of FUT7 and sLeX synthesis were increased, and the percent adhesion of trophoblast cells to RL95-2 cell monolayer was significantly increased (P?相似文献   

3.
4.
Embryo implantation into maternal endometrium is critical for initiation and establishment of pregnancy, requiring developmental synchrony between endometrium and blastocyst. However, factors regulating human endometrial–embryo cross talk and facilitate implantation remain largely unknown. Extracellular vesicles (EVs) are emerging as important mediators of this process. Here, a trophectoderm spheroid‐based in vitro model mimicking the pre‐implantation human embryo is used to recapitulate important functional aspects of blastocyst implantation. Functionally, human endometrial EVs, derived from hormonally treated cells synchronous with implantation, are readily internalized by trophectoderm cells, regulating adhesive and invasive capacity of human trophectoderm spheroids. To gain molecular insights into mechanisms underpinning endometrial EV‐mediated enhancement of implantation, quantitative proteomics reveal critical alterations in trophectoderm cellular adhesion networks (cell adhesion molecule binding, cell–cell adhesion mediator activity, and cell adherens junctions) and metabolic and gene expression networks, and the soluble secretome from human trophectodermal spheroids. Importantly, transfer of endometrial EV cargo proteins to trophectoderm to mediate changes in trophectoderm function is demonstrated. This is highlighted by correlation among endometrial EVs, the trophectodermal proteome following EV uptake, and EV‐mediated trophectodermal cellular proteome, important for implantation. This work provides an understanding into molecular mechanisms of endometrial EV‐mediated regulation of human trophectoderm functions—fundamental in understanding human endometrium–embryo signaling during implantation.  相似文献   

5.
In the present study, we investigated the role of Paeonia lactiflora Pall. extract on embryo implantation in vitro and in vivo. A polysaccharides depleted-water extract of P. lactiflora (PL-PP) increased LIF expression in human endometrial Ishikawa cells at non-cytotoxic doses. PL-PP significantly increased the adhesion of the human trophectoderm-derived JAr spheroids to endometrial Ishikawa cells. PL-PP-induced LIF expression was decreased in the presence of a p38 kinase inhibitor SB203580 and an MEK/ERK inhibitor U0126. Furthermore, endometrial LIF knockdown by shRNA reduced the expression of integrins β3 and β5 and adhesion of JAr spheroids to Ishikawa cells. In vivo administration of PL-PP restored the implantation of mouse blastocysts in a mifepristone-induced implantation failure mice model. Our results demonstrate that PL-PP increases LIF expression via the p38 and MEK/ERK pathways and favors trophoblast adhesion to endometrial cells.  相似文献   

6.
Sirtuin 1 (SIRT1), originally found as a class III histone deacetylase, is a principal modulator of pathways downstream of calorie restriction, and the activation of SIRT1 ameliorates glucose homeostasis and insulin sensitivity. We examined the role of SIRT1 in the regulation of uterine receptivity using Ishikawa and RL95-2 endometrial carcinoma cell lines. Exogenous expression of SIRT1 significantly enhanced E-cadherin expression, while small interfering RNA-mediated depletion of endogenous SIRT1 resulted in a significant reduction of E-cadherin expression. A SIRT1 activator resveratrol elevated E-cadherin expression in a dose dependent manner, while SIRT1 repressors nicotinamide and sirtinol exhibited a dose dependent reduction of E-cadherin expression. We also showed that both forced expression of SIRT1 and activation of SIRT1 promote E-cadherin-driven reporter gene constructs, and SIRT1 is localized at E-cadherin promoter containing E-box elements in Ishikawa cells. Using an in vitro model of embryo implantation, we demonstrate that exogenous expression of SIRT1 and stimulation of SIRT1 activity resulted in the Ishikawa cell line becoming receptive to JAR cell spheroid attachment. Furthermore, resveratrol enhanced E-cadherin and Glycodelin protein expression at sites of intercellular contact, suggesting an additive role of resveratrol in promoting implantation. The initial step of human reproduction depends on the capacity of an embryo to attach and implant into the endometrial wall, and these results revealed the novel mechanism that activation and increased expression of SIRT1 play an important role in uterine receptivity.  相似文献   

7.
In vitro fertilization has overcome infertility issues for many couples. However, achieving implantation of a viable embryo into the maternal endometrium remains a limiting step in optimizing pregnancy success. The molecular mechanisms which characterize the transient state of endometrial receptivity, critical in enabling embryo‐endometrial interactions, and proteins which underpin adhesion at the implantation interface, are limited in humans despite these temporally regulated processes fundamental to life. Hence, failure of implantation remains the “final frontier” in infertility. A human coculture model is utilized utilizing spheroids of a trophectoderm (trophoblast stem) cell line, derived from pre‐implantation human embryos, and primary human endometrial epithelial cells, to functionally identify “fertile” versus “infertile” endometrial epithelium based on adhesion between these cell types. Quantitative proteomics identified proteins associated with human endometrial epithelial receptivity (“epithelial receptome”) and trophectoderm adhesion (“adhesome”). As validation, key “epithelial receptome” proteins (MAGT‐1/CDA/LGMN/KYNU/PC4) localized to the epithelium of receptive phase (mid‐secretory) endometrium obtained from fertile, normally cycling women but is largely absent from non‐receptive (proliferative) phase tissues. Factors involved in embryo‐epithelium interaction in successive temporal stages of endometrial receptivity and implantation are demonstrated and potential targets for improving fertility are provided, enhancing potential to become pregnant either naturally or in a clinical setting.  相似文献   

8.
胚胎与子宫内膜上皮细胞之间的黏附是胚胎成功植入的关键. 岩藻糖基转移酶Ⅳ (FUT4)对胚胎细胞与子宫内膜细胞黏附的影响未见报道.本研究以人子宫内膜细胞 (HEC-1A)和胚胎细胞(JAR)为体外着床模型,观察上调HEC-1A细胞中FUT4表达对JAR细 胞与HEC-1A细胞黏附的影响.RT-PCR和免疫细胞化学检测结果显示,FUT4过表达增加 HEC-1A细胞中FUT4基因及蛋白的表达;免疫细胞化学及Western印迹结果表明,上调HEC-1A细胞中FUT4增加细胞表面LeY的合成;细胞黏附实验结果显示,与未转染组相比较,FUT4过表达增加了JAR细胞与HEC-1A细胞的黏附率.本研究证明,FUT4过表达可以增加细胞表面LeY寡糖抗原的合成,从而促进胚胎细胞与子宫内膜细胞的黏附.  相似文献   

9.
Cytokine-like protein 1 (Cytl1), originally described as a protein expressed in CD34+ cells, was recently identified as a functional secreted protein involved in chondrogenesis and cartilage development. However, our knowledge of Cytl1 is still limited. Here, we determined the Cytl1 expression pattern regulated by ovarian hormones at both the mRNA and protein levels. We found that the endometrial expression of Cytl1 in mice was low before or on the first day of gestation, significantly increased during embryo implantation, and then decreased at the end of implantation. We investigated the effects of Cytl1 on endometrial cell proliferation, and the effects on the secretion of leukemia inhibitory factor (LIF) and heparin-binding epidermal growth factor (HB-EGF). We also explored the effect of Cytl1 on endometrial adhesion properties in cell-cell adhesion assays. Our findings demonstrated that Cytl1 is an ovarian hormone-dependent protein expressed in the endometrium that enhances the proliferation of HEC-1-A and RL95-2 cells, stimulates endometrial secretion of LIF and HB-EGF, and enhances the adhesion of HEC-1-A and RL95-2 cells to JAR spheroids. This study suggests that Cytl1 plays an active role in the regulation of embryo implantation.  相似文献   

10.
Trophinin is an intrinsic membrane protein expressed in trophectoderm cells of embryos and in uterine epithelial cells. Trophinin potentially mediates apical cell adhesion at human embryo implantation sites through trophinin-trophinin binding in these two cell types. Trophinin-mediated cell adhesion activates trophectoderm cells for invasion, whereas the effect of adhesion on maternal side is not known. We show that addition of GWRQ peptide, a previously established peptide that mimics trophinin-mediated cell adhesion, to human endometrial epithelial cells expressing trophinin induces their apoptosis. FAS involvement was excluded, as GWRQ did not bind to FAS, and FAS knockdown did not alter GWRQ-induced apoptosis. Immunoblotting analyses of protein kinases revealed an elevation of PKC-δ protein in GWRQ-bound endometrial epithelial cells. In the absence of GWRQ, PKC-δ associated with trophinin and remained cytoplasmic, but after GWRQ binding to the trophinin extracellular domain, PKC-δ became tyrosine phosphorylated, dissociated from trophinin and entered the nucleus. In PKC-δ knockdown endometrial cells, GWRQ did not induce apoptosis. These results suggest that trophinin-mediated cell adhesion functions as a molecular switch to induce apoptosis through the PKC-δ pathway in endometrial epithelial cells. Thus, trophinin-mediated induction of apoptosis of endometrial epithelial cells, which function as a barrier to embryo invasion, allows trophoblast invasion of maternal tissue and embryo implantation in humans.Key words: blastocyst, embryo implantation, apoptosis, cell adhesion, signal transduction  相似文献   

11.
Successful embryonic implantation requires an effective maternal–embryonic molecular dialogue. However, the detailed mechanisms of epithelial-embryo adhesion remain poorly understood. Here, we report that matrix metalloproteinase-26 (MMP-26) is a novel downstream target gene of homeobox a 10 (HOXA10) in human endometrial cells. HOXA10 binds directly to a conserved TTAT unit (−442 to −439) located within the 5′ regulatory region of the MMP-26 gene and regulates the expression and secretion of MMP-26 in a concentration-dependent manner. Moreover, the adenovirus-mediated overexpression of MMP-26 in Ishikawa cells markedly increased BeWo spheroid adhesion. An antibody blocking assay further demonstrated that the promotion of BeWo spheroid adhesion by HOXA10 and MMP-26 was significantly inhibited by pre-treatment with a specific antibody against MMP-26. These results demonstrate that the HOXA10-mediated expression of MMP-26 promotes embryo adhesion during the process of embryonic implantation.  相似文献   

12.
Liu S  Zhang Y  Liu Y  Qin H  Wang X  Yan Q 《IUBMB life》2008,60(7):461-466
Implantation is a complex developmental event that is initiated by recognition and adhesion of the embryo to the endometrial epithelium. sLeX is an oligosaccharide antigen acting as the ligand of L-selectin, and is stage-specifically expressed in the endometrial epithelium. The adhesion system mediated by L-selectin and sLeX oligosaccharide plays an important role in this process. FUT7 is a key enzyme for sLeX synthesis, and the regulation of sLeX through FUT7 may influence maternal-fetal recognition. In this study, we observed the effect of FUT7 antisense oligodeoxynucleotide on the expression of FUT7 and sLeX, as well as adhesion in an in vitro implantation model consisting of the human uterine epithelial cell line RL95-2 and the human embryonic cell line JAR. Results showed that the expression of FUT7 was significantly decreased, compared with controls, after FUT7 antisense oligodeoxynucleotide transfection into RL95-2 cells, as determined by RT-PCR, Western blotting, and indirect immunofluorescence. Synthesis of sLeX was also decreased, consistent with the FUT7 decrease, as shown by indirect immunofluorescence. The adhesion of embryonic cells to uterine epithelial cells was significantly reduced (P < 0.01) compared with the control. These data indicate that the use of a FUT7 antisense oligodeoxynucleotide can cause a significant reduction of both FUT7 and sLeX antigen, and thereby inhibit the adhesion of embryo cells to endometrium. This approach may provide a new way to regulate reproduction.  相似文献   

13.
The present investigation reports embryo-induced modifications in the epithelial cells of the endometrium in a primate species. In vivo, epithelial cell response to the embryonic signals was assessed at the embryo attachment stage in the gestational uterus of bonnet monkeys (Macaca radiata) and in vitro response was investigated by treating human endometrial epithelial cell line (Ishikawa) with human embryo conditioned media (CM). Endometrial epithelial (EE) cells at the embryo attachment stage in bonnet monkeys revealed higher proliferation accompanied by significant up regulation (p < 0.05) in the expression of estrogen receptor (ER)α and down regulation (p < 0.05) in ERβ expression. Further gestational EE cells showed higher (p < 0.001) expression of mucin-1, except in the embryo attachment site. Also, observed were significantly higher expression (p < 0.05) and altered cytoplasmic distribution of α(v) and β(3) integrins, when compared to non-pregnant animals. In pregnant animals, the embryo attachment zone showed differential expression of immunoreactive integrins as compared to the non-attachment zone. This suggested the role of embryo secreted factors in modulation of the epithelial cell profile. In vitro studies partially supported this assumption. Significantly higher proliferation (p < 0.05), as well as increased expression of ERα, integrin β(3) and mucin-1 (p < 0.05) were observed in Ishikawa cells, on stimulation with CM. Taken together, these results indicated the proliferation and modulation in the expression of estrogen receptors and cell adhesion molecules in the EE cells; at the embryo attachment stage in bonnet monkeys. Further it is likely that embryo secreted factors contribute to some of these modifications in EE cells. This report is the first account of discrete cellular events, which occur in the uterine epithelium, at the embryo attachment stage in a primate species.  相似文献   

14.
In vitro studies in our laboratory have indicated that heparan sulfate proteoglycans (HSPGs) play an important role in murine embryo implantation. In order to investigate the potential function of HSPGs in human implantation, two human cell lines (RL95 and JAR) were used to model uterine epithelium and embryonal trophectoderm, respectively. A heterologous cell-cell adhesion assay was developed to determine if binding of JAR cells to RL95 cells was heparan sulfate–dependent. Labeled, single cell suspensions of JAR cells attached to confluent monolayers of RL95 cells in a dose- and time-dependent manner. Heparin-like glycosaminoglycans and JAR cell proteoglycans competitively inhibited JAR cell adhesion to RL95 cells by 50% or more. A panel of chemically modified heparins were used to demonstrate that O-sulfation and amino group substitution were critical for inhibition of cell-cell adhesion. Treatment with chlorate, an inhibitor of A ATP-sulfurylase, resulted in a 56% reduction in cell-cell binding compared to untreated controls. Heparinase and chondroitinase ABC markedly inhibited JARRL95 binding, while chondroitinase AC had no significant effect. These observations indicated that HSPGs as well as dermatan sulfate–containing proteoglycans participated in cell-cell binding. Collectively, these results indicate that initial binding interactions between JAR and RL95 cells is mediated by cell surface glycosaminoglycans (GAGs) with heparin-like properties (i.e., heparan sulfate and dermatan sulfate). These observations are consistent with an important role for HS and heparin-like GAGs as well as their corresponding binding sites in early stages of human trophoblast-uterine epithelial cell binding.  相似文献   

15.
Fukuda MN  Sugihara K 《生理学报》2012,64(3):247-258
人类胚胎植入过程不仅受到在进化上保守的机制调节,而且也受到人类一种独有的机制调节。有证据显示,细胞黏附分子L-选择蛋白和trophinin在人类胚胎植入过程扮演独特的角色。在本文中,我们描述了L-选择素和trophinin的黏蛋白糖配体的双重作用,也描述了trophinin相关蛋白bystin和tastin的双重作用。我们随后描述了滋养外胚层细胞和子宫内膜上皮细胞中由trophinin调节的信号转导。本综述也涵盖了钙依粘连蛋白和整合素在人类胚胎植入过程中的作用。  相似文献   

16.
At the initial phase of embryo implantation, the trophoblast must have acquired competence for adhesion to the uterine epithelium, a condition whose cell biological basis is far from understood. In the present study, trophoblast-type cells (BeWo, JAr, and Jeg-3 choriocarcinoma cell lines) were treated with retinoic acid, methotrexate, dibutyryl-cAMP, or phorbol-12-myristate-13-acetate in order to modulate their ability to adhere to uterine epithelial cells (RL95-2). In an established model, multicellular spheroids of choriocarcinoma cells were transferred onto the surface of monolayer cultures of RL95-2 cells followed by a centrifugal force-based adhesion assay. In controls, about 45% of BeWo and JAr cell spheroids and 75% of Jeg-3 spheroids adhered to uterine monolayers within 30 min. Pretreatment of spheroids with either of the agents stimulated differentiation as indicated by the rate of chorionic gonadotropin secretion, but consistently reduced the adhesion to the endometrial monolayer in all three choriocarcinoma cell lines. While previous investigations had shown that invasiveness of trophoblast cells (into extracellular matrix) does not seem to be linked to the differentiation program in a simple manner, the present data suggest that such an (inverse) link may indeed exist with respect to the ability to initiate an adhesive interaction with the uterine epithelium. These observations support the view that epithelial cell interactions as typical for the initial phase of embryo implantation are regulated in a way that is clearly different from cell-matrix interactions governing later phases of trophoblast invasion into the endometrial stroma.  相似文献   

17.
18.
During embryo implantation, trophinin mediates cell adhesion by homophilic binding at the apical surfaces of trophectoderm and endometrium. Trophinin is expressed on the human endometrial epithelia in rare occasions. We developed hCG-coated agarose beads that mimic the physical and physiological features of an implantation-stage human blastocyst. When hCG-coated beads were applied to human endometrial epithelial cells in the presence of IL-1beta, endometrial cells acquired strong trophinin expression and the ability for apical cell adhesion with trophinin-expressing human trophoblastic cells. These results provide a mechanism for trophinin-mediated adhesion of human blastocyst to endometrium by a spatially and temporally restricted paracrine effect of hCG derived from the blastocyst.  相似文献   

19.
Focal adhesions play an important role in promoting embryo invasion; in particular, focal adhesions disassemble at the time of implantation in the rat, facilitating the detachment of the uterine luminal epithelium to allow the embryo to invade the endometrium. This study investigated focal adhesion protein, focal adhesion kinase (FAK) in the rat uterine luminal, and glandular epithelial cells to understand the dynamics of focal adhesions during early pregnancy. FAK undergoes extensive distributional change during early pregnancy, and surprisingly, FAK was not localized at the site of focal adhesions, instead being localized to the site of cell‐to‐cell contact and colocalizing with ZO‐1 on day 1 of pregnancy. At the time of implantation, FAK increases in the apical region of the uterine luminal epithelial cells which was regulated by progesterone. Using an in vitro co‐culture model of rat blastocysts attached to Ishikawa cells, FAK was present apically both in the rat blastocyst and the Ishikawa cells, suggesting a role in attachment andin mediating signal transduction between these two genetically different cell types. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Glycosylation alters the molecular and functional features of glycoproteins, which is closely related with many physiological processes and diseases. During “window of implantation”, uterine endometrium transforms into a receptive status to accept the embryo, thereby establishing successful embryo implantation. In this article, we aimed at investigating the role of N-glycosylation, a major modification type of glycoproteins, in the process of endometrial receptivity establishment. Results found that human uterine endometrial tissues at mid-secretory phase exhibited Lectin PHA-E+L (recognizes the branched N-glycans) positive N-glycans as measured by the Lectin fluorescent staining analysis. By utilizing in vitro implantation model, we found that de-N-glycosylation of human endometrial Ishikawa and RL95-2 cells by tunicamycin (inhibitor of N-glycosylation) and peptide-N-glycosidase F (PNGase F) impaired their receptive ability to human trophoblastic JAR cells. Meanwhile, N-glycosylation of integrin αvβ3 and leukemia inhibitory factor receptor (LIFR) are found to play key roles in regulating the ECM-dependent FAK/Paxillin and LIF-induced STAT3 signaling pathways, respectively, thus affecting the receptive potentials of endometrial cells. Furthermore, in vivo experiments and primary mouse endometrial cells-embryos coculture model further verified that N-glycosylation of mouse endometrial cells contributed to the successful implantation. Our results provide new evidence to show that N-glycosylation of uterine endometrium is essential for maintaining the receptive functions, which gives a better understanding of the glycobiology of implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号