首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of sulfur dioxide (SO2) derivatives (bisulfite and sulfite, 1:3 M/M) on voltage-dependent potassium current in isolated adult rat ventricular myocyte were investigated using the whole cell patch-clamp technique. SO2 derivatives (10 microM) increased transient outward potassium current (I(to)) and inward rectifier potassium current (I(K1)), but did not affect the steady-state outward potassium current (I(ss)). SO2 derivatives significantly shifted the steady-state activation curve of I(to) toward the more negative potential at the V(h) point, but shifted the inactivation curve to more positive potential. SO2 derivatives markedly shifted the curve of time-dependent recovery of I(to) from the steady-state inactivation to the left, and accelerated the recovery of I(to) from inactivation. In addition, SO2 derivatives also significantly change the inactivation time constants of I(to) with increasing fast time constant and decreasing slow time constant. These results indicated a possible correlation between the change of properties of potassium channel and SO2 inhalation toxicity, which might cause cardiac myocyte injury through increasing extracellular potassium via voltage-gated potassium channels.  相似文献   

2.
We tested whether close coupling exists between mitochondria and sarcolemma by monitoring whole cell ATP-sensitive K(+) (K(ATP)) current (I(K,ATP)) as an index of subsarcolemmal energy state during mitochondrial perturbation. In rabbit ventricular myocytes, either pinacidil or the mitochondrial uncoupler dinitrophenol (DNP), which rapidly switches mitochondria from net ATP synthesis to net ATP hydrolysis, had little immediate effect on I(K,ATP). In contrast, in the presence of pinacidil, exposure to 100 microM DNP rapidly activated I(K,ATP) with complex kinetics consisting of a quick rise [time constant of I(K,ATP) increase (tau) = 0.13 +/- 0.01 min], an early partial recovery (tau = 0.43 +/- 0.04 min), and then a more gradual increase. This DNP-induced activation of I(K,ATP) was reversible and accompanied by mitochondrial flavoprotein oxidation. The F(1)F(0)-ATPase inhibitor oligomycin abolished the DNP-induced activation of I(K,ATP). The initial rapid rise in I(K,ATP) was blunted by atractyloside (an adenine nucleotide translocator inhibitor), leaving only a slow increase (tau = 0.66 +/- 0.17 min, P < 0.01). 2,4-Dinitrofluorobenzene (a creatine kinase inhibitor) slowed both the rapid rise (tau = 0.20 +/- 0.01 min, P < 0.05) and the subsequent declining phase (tau = 0.88 +/- 0.19 min, P < 0.05). From single K(ATP) channel recordings, we excluded a direct effect of DNP on K(ATP) channels. Taken together, these results indicate that rapid changes in F(1)F(0)-ATPase function dramatically alter subsarcolemmal energy charge, as reported by pinacidil-primed K(ATP) channel activity, revealing cross-talk between mitochondria and sarcolemma. The effects of mitochondrial ATP hydrolysis on sarcolemmal K(ATP) channels can be rationalized by reversal of F(1)F(0)-ATPase and the facilitation of coupling by the creatine kinase system.  相似文献   

3.
4.
To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049–C2060, 2001). We incorporated equations for Ca2+ and Mg2+ buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K+ channel and L-type Ca2+ channel, Na+-K+-ATPase, and sarcolemmal and sarcoplasmic Ca2+-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different INa, Ito, IKr, IKs, and IKp channel properties. The results indicate that the ATP-sensitive K+ channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, Pi, total Mg2+, Na+, K+, Ca2+, and pH diastolic levels are normal. The model predicts that only KATP ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the KATP channel opening through metabolic interactions with the endogenous PI cascade (PIP2, PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes. ATP-sensitive K+ channel; creatine and adenylate kinase reactions; phosphatidylinositol phosphates; heart; mathematical model  相似文献   

5.
Du YM  Tang M  Liu CJ  Ke QM  Luo HY  Hu XW 《生理学报》2004,56(3):282-287
应用全细胞膜片钳技术研究了血小板活化因子(platelet activatingfactor,PAF)对豚鼠心室肌细胞动作电位和钾电流的影响.结果发现,当电极内液ATP浓度为5 mmol/L(模拟正常条件)时,1 μmol/L PAF使APD90由对照的225.8±23.3 ms延长至352.8±29.8ms(n=5,P<0.05);使IK尾电流在指令电压 30 mV由对照的173.5±16.7 pA降至152.1±11.5 pA(P<0.05,n=4);使Ikl在指令电压为-120 mV时由对照组的-6.1±1.3 nA降至-5.6±1.1 nA(P<0.05,n=5);但PAF在生理膜电位范围(-90mV~ 20mV)对IK1没有影响.当电极内液ATP浓度为0mmol/L时,IK·ATP开放(模拟缺血条件),1 μmol/LPAF却显著缩短APD90,由对照的153±24.6 ms缩短至88.2±19.4 ms(n=5,P<0.01).而用1 μmol/L格列本脲(IK·ATP的特异阻断剂)预处理后,恢复了PAF可显著延长动作电位时程的作用.结果提示,PAF可能扩大缺血心肌和正常心肌细胞动作电位时程的不均一性,是缺血/再灌注性心律失常发生的重要原因.  相似文献   

6.
Wu SN  Wu AZ  Sung RJ 《Life sciences》2007,80(4):378-387
The ATP-sensitive K(+) (K(ATP)) channels are known to provide a functional linkage between the electrical activity of the cell membrane and metabolism. Two types of inwardly rectifying K(+) channel subunits (i.e., Kir6.1 and Kir6.2) with which sulfonylurea receptors are associated were reported to constitute the K(ATP) channels. In this study, we provide evidence to show two types of K(ATP) channels with different biophysical properties functionally expressed in isolated rat ventricular myocytes. Using patch-clamp technique, we found that single-channel conductance for the different two types of K(ATP) channels in these cells was 57 and 21 pS. The kinetic properties, including mean open time and bursting kinetics, did not differ between these two types of K(ATP) channels. Diazoxide only activated the small-conductance K(ATP) channel, while pinacidil and dinitrophenol stimulated both channels. Both of these K(ATP) channels were sensitive to block by glibenclamide. Additionally, western blotting, immunochemistry, and RT-PCR revealed two types of Kir6.X channels, i.e., Kir6.1 and Kir6.2, in rat ventricular myocytes. Single-cell Ca(2+) imaging also revealed that similar to dinitrophenol, diazoxide reduced the concentration of intracellular Ca(2+). The present results suggest that these two types of K(ATP) channels may functionally be related to the activity of heart cells.  相似文献   

7.
目的 :研究应激对心室肌细胞L 型钙离子通道电流及激活、失活门控动力学特性的影响。方法 :制备离体心室肌细胞并用去甲肾上腺素 (NE)诱导建立应激心肌细胞模型 ,应用流式细胞术 (FCM )和Fura 2荧光分光光度法测定应激心室肌细胞的凋亡率和心肌细胞内游离钙浓度变化。利用膜片钳全细胞钳制记录法记录应激心室肌细胞L 型钙离子通道电流I V曲线图及稳态激活、失活曲线图。结果 :FCM检测发现 1 0 - 4mol/L的NE模拟应激可导致心室肌细胞凋亡率明显上升 ,对照组 :0 .36 % ,应激组 :2 .1 7% (P <0 .0 1 )。 1 0 - 4mol/L的NE干预使Ica L峰电流幅值显著性上升 ,激活曲线分析发现应激后曲线明显左移 ,半数最大激活膜电位 (V1 /2 )为 (- 1 4 .59± 0 .2 4 )mV ,较之于对照组 :(- 0 .69± 0 .36)mV ,差异显著 ,而稳态失活曲线特性未发生有意义的改变。实验组心肌细胞内游离钙浓度较对照组升高 1 6 .7%。结论 :应激可导致L 型钙离子通道电流增加 ,通道更易于激活 ,通道的这种异常活动可能导致钙超载 ,从而引起心肌细胞凋亡 ,介导应激性心肌损伤的发生  相似文献   

8.
Gao Z  Lau CP  Wong TM  Li GR 《Cellular signalling》2004,16(3):333-341
Effects of the isoflavone protein tyrosine kinase (PTK) inhibitor genistein on voltage-dependent K(+) currents, i.e., transient outward K(+) current (I(to)), sustained K(+) current (I(ss)), and inward rectifier K(+) current (I(K1)) were studied in rat cardiac ventricular myocytes. It was found that I(to) was reversibly inhibited by genistein in a concentration-dependent manner (IC(50)=28.1 microM), while I(ss) was suppressed by genistein with IC(50) of 18.5 microM. In addition, I(K1) (at -50 mV) was significantly decreased by 36.3+/-4.4% with 25 microM genistein. The inhibition of I(to), I(ss), and I(K1) by genistein was significantly reversed by the application of the protein tyrosine phosphatase inhibitor sodium orthovanadate (1 mM). However, I(to), I(ss), and I(K1) were not affected by the non-isoflavone PTK inhibitor tyrphostin A23 (100 microM) and PP2 (1 microM). These results indicate that activation of I(to), I(ss), and I(K1) channels is modulated by genistein-sensitive PTKs in rat ventricular myocytes.  相似文献   

9.
Because the electrophysiological effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on the heart are little known, we studied the regulation of the atrial ATP-sensitive K(+) (K(ATP)) current by PACAP on primary cultured neonatal rat atrial myocytes. PACAP-38 stimulates cAMP production with EC(50) = 0.28 nmol/l (r = 0.92, P < 0.02). PACAP-38 and PACAP-27 (10 nmol/l) have similar maximal effects, whereas 100 nmol/l vasoactive intestinal polypeptide (VIP) is 2.7 times less effective (P < 0.05). RT-PCR shows the presence of cloned PACAP receptors PAC(1) (> or =2 isoforms), VPAC(1), and VPAC(2). PACAP-38 dose dependently activates the whole cell atrial K(ATP) current with EC(50) = 1-3 nmol/l (n = 44). Maximal effects occur at 10 nmol/l (91 +/- 15 pA/pF, n = 18). Diazoxide further increases the PACAP-activated current by 78% (P < 0.05; n = 6). H(89) (500 nmol/l), a protein kinase A (PKA) inhibitor, reduces the PACAP-activated K(ATP) current to 17.8 +/- 9.6% (n = 5) of the maximal diazoxide-induced current and totally inhibits the cAMP-induced K(ATP) current. A protein kinase C (PKC) inhibitor peptide (50 micromol/l) in the pipette reduces the PACAP-38-induced K(ATP) current to 33 +/- 17 pA/pF (P < 0.05, n = 6) without significantly affecting the currents induced by cAMP or VIP. The results suggest that: 1) PAC(1), VPAC(1), and VPAC(2) are present in atrial myocytes; and 2) PACAP-38 activates the atrial K(ATP) channels through both PKA and PKC pathways.  相似文献   

10.
Pharmacological modulation of ATP-sensitive K+ (K(ATP)) channels is used in the treatment of a number of clinical conditions, including type 2 diabetes and angina. The sulphonylureas and related drugs, which are used to treat type 2 diabetes, stimulate insulin secretion by closing K(ATP) channels in pancreatic beta-cells. Agents used to treat angina, by contrast, act by opening K(ATP) channels in vascular smooth and cardiac muscle. Both the therapeutic K(ATP) channel inhibitors and the K(ATP) channel openers target the sulphonylurea receptor (SUR) subunit of the K(ATP) channel, which exists in several isoforms expressed in different tissues (SUR1 in pancreatic beta-cells, SUR2A in cardiac muscle and SUR2B in vascular smooth muscle). The tissue-specific action of drugs that target the K(ATP) channel is attributed to the properties of these different SUR subtypes. In this review, we discuss the molecular basis of tissue-specific drug action, and its implications for clinical practice.  相似文献   

11.
Summary The voltage- and time-dependent properties of whole-cell, multi-channel (outside-out), and single channel inwardly-rectifying K+ currents were studied using adult and neonatal rat, and embryonic chick ventricular myocytes. Inward rectification of the current-voltage relationship was found in the whole-cell and single channel measurements. The steady-state single channel probability of opening decreased with hyperpolarization from EK, as did the mean open time, thereby explaining the time-dependent inactivation of the macroscopic current. Myocytes dialysed with a Mg++-free K+ solution (to remove the property of inward rectification) displayed a quasi-linear current-voltage relationship. The outward K+ currents flowing through the modified inward rectifier channels were able to be blocked by the local anesthetic and anti-arrhythmic agent, lidocaine.  相似文献   

12.
The voltage- and time-dependent properties of whole-cell, multi-channel (outside-out), and single channel inwardly-rectifying K+ currents were studied using adult and neonatal rat, and embryonic chick ventricular myocytes. Inward rectification of the current-voltage relationship was found in the whole-cell and single channel measurements. The steady-state single channel probability of opening decreased with hyperpolarization from EK, as did the mean open time, thereby explaining the time-dependent inactivation of the macroscopic current. Myocytes dialysed with a Mg++-free K+ solution (to remove the property of inward rectification) displayed a quasi-linear current-voltage relationship. The outward K+ currents flowing through the modified inward rectifier channels were able to be blocked by the local anesthetic and anti-arrhythmic agent, lidocaine.  相似文献   

13.
The effects of quinidine on single inward rectifier K channels were investigated in cell-attached patches with 4.5 mM pipette potassium concentrations. Under these conditions, the single-channel slope conductance of the predominant conductance level of the inward rectifier channels was 3.9 +/- 0.3 pS at membrane potentials between -75 and -150 mV. Quinidine reversibly decreased the likelihood of channel opening to the main conductance level without reducing the single-channel conductance, and also reduced the probability of channel opening to subconducting levels. Quinidine had no significant effects on the channel open times, and the inhibition of channel opening was only slightly voltage dependent over the range of membrane potentials investigated. Quinidine induced a complete cessation of channel openings for brief periods (up to 2 min), suggesting that quinidine promoted occupancy of a state from which opening was less likely. Occasional long periods (up to an hour) with an absence of channel activity were also observed but quinidine did not appear to promote this behavior. The data suggest that quinidine decreases the ability of the channel to enter both main and subconducting states. By binding to a particular closed conformation of the channel, quinidine could reduce the likelihood of channel opening. The main features of these observations could be accounted for using the three-state kinetic model proposed by Sakmann, B. and G. Trube (1984b. J. Physiol. [Lond.]. 347:659-683.) with quinidine binding to the middle closed state.  相似文献   

14.
神经肽Y对心室肌细胞离子通道的影响   总被引:2,自引:1,他引:2  
Zhao HC  Liu ZB  Feng QL  Cui XL  Zhang CM  Wu BW 《生理学报》2006,58(3):225-231
采用全细胞膜片钳技术观察神经肽Y(neuropeptide Y,NPY)对心室肌细胞离子通道的影响。结果如下:(1)NPY浓度在1.0~100nmol/L范围内剂量依赖性抑制大鼠心室肌细胞I_(Ca-L),IC_(50)值为1.86nmol/L。NPY对I_(Ca-L)的I-V曲线的最大峰值电位、激活和失活电位均无显著影响。NPY对去甲肾上腺素(norepinephrine,NE)增加的I_(Ca-L)有显著抑制作用。(2)NPY对人鼠心室肌细胞I_(Na/Ca)有显著抑制作用。10nmol/L NPY使前向I__(Na/Ca)由(0.27±0.11)pA/pF减小为(0.06±0.01)pA/pF;反向I__(Na/Ca)由(0.45±0.12)pA/pF降为(0.27±0.09)pA/pF(P<0.05,n=4)。(3)NPY对大鼠心室肌细胞I_(to)有显著增强作用。10 nmol/L NPY使I_(to)由(12.5±0.70)pA/pF增加至(14.7±0.59)pA/pF(P<0.05,n=4)。(4)10nmol/L NPY对大鼠心室肌细胞I_(Na)没有显著影响。(5)10nmol/L NPY对豚鼠心室肌细胞I_K无明显影响。研究结果证实,NPY抑制大鼠心室肌细胞I_(Ca-L)和I_(Na/Ca),增强I_(to)对I_Na和豚鼠心审肌细胞I_K没有显著作用,表明NPY对上述主要离子通道的效应与NE的效应相拮抗。  相似文献   

15.
ATP-sensitive potassium (K(ATP)) channels are inhibited by intracellular ATP and activated by ADP. Nutrient oxidation in beta-cells leads to a rise in [ATP]-to-[ADP] ratios, which in turn leads to reduced K(ATP) channel activity, depolarization, voltage-dependent Ca(2+) channel activation, Ca(2+) entry, and exocytosis. Persistent hyperinsulinemic hypoglycemia of infancy (HI) is a genetic disorder characterized by dysregulated insulin secretion and, although rare, causes severe mental retardation and epilepsy if left untreated. The last five or six years have seen rapid advance in understanding the molecular basis of K(ATP) channel activity and the molecular genetics of HI. In the majority of cases for which a genotype has been uncovered, causal HI mutations are found in one or the other of the two genes, SUR1 and Kir6.2, that encode the K(ATP) channel. This article will review studies that have defined the link between channel activity and defective insulin release and will consider implications for future understanding of the mechanisms of control of insulin secretion in normal and diseased states.  相似文献   

16.
It has been suggested that the positive inotropic effect of the vasoactive peptide hormone, endothelin-1 (ET-1), involves inhibition of cardiac K(+) currents. In order to identify the K(+) currents modulated by ET-1, the outward K(+) currents of isolated rat ventricular myocytes were investigated using whole-cell patch-clamp recording techniques. Outward currents were elicited by depolarisation to +40 mV for 200 ms from the holding potential of -60 mV. Currents activated rapidly, reaching a peak (I(pk)) of 1310 +/- 115 pA and subsequently inactivating to an outward current level of 1063 +/- 122 pA at the end of the voltage-pulse (I(late)) (n = 11). ET-1 (20 nM) reduced I(pk) by 247.6 +/- 60.7 pA (n = 11, P < 0.01) and reduced I(late) by 323.2 +/- 43.9 pA (P < 0.001). The effects of ET-1 were abolished in the presence of the nonselective ET receptor antagonist, PD 142893 (10 microM, n = 5). Outward currents were considerably reduced and the effects of ET-1 were not observed when K(+) was replaced with Cs(+) in the experimental solutions; this indicates that ET-1 modulated K(+)-selective currents. A double-pulse protocol was used to investigate the inactivation of the currents. The voltage-dependent inactivation of the currents from potentials positive to -80 mV was fitted by a Boltzmann equation revealing the existence of an inactivating transient outward component (I(to)) and a noninactivating steady-state component (I(ss)). ET-1 markedly inhibited I(ss) by 43.0 +/- 3.8% (P < 0.001, n = 7) and shifted the voltage-dependent inactivation of I(to) by +3.3 +/- 1.2 mV (P < 0.05). Although ET-1 had little effect on the onset of inactivation of the currents elicited from a conditioning potential of -70 mV, the time-independent noninactivating component of the currents was markedly inhibited. In conclusion, the predominant effect of ET-1 was to inhibit a noninactivating steady-state background K(+) current (I(ss)). These results are consistent with the hypothesis that I(ss) inhibition contributes to the inotropic effects of ET-1.  相似文献   

17.
The mechanism underlying temperature-dependent shortening of action potential (AP) duration was examined in the fish (Carassius carassius L.) heart ventricle. Acute temperature change from +5 to +18 degrees C (heat stress) shortened AP duration from 2.8 +/- 0.3 to 1.3 +/- 0.1 s in intact ventricles. In 56% (18 of 32) of enzymatically isolated myocytes, heat stress also induced reversible opening of ATP-sensitive K+ channels and increased their single-channel conductance from 37 +/- 12 pS at +8 degrees C to 51 +/- 13 pS at +18 degrees C (Q10 = 1.38) (P < 0.01; n = 12). The ATP-sensitive K+ channels of the crucian carp ventricle were characterized by very low affinity to ATP both at +8 degrees C [concentration of Tris-ATP that produces half-maximal inhibition of the channel (K1/2)= 1.35 mM] and +18 degrees C (K1/2 = 1.85 mM). Although acute heat stress induced ATP-sensitive K+ current (IK,ATP) in patch-clamped myocytes, similar heat stress did not cause any glibenclamide (10 microM)-sensitive changes in AP duration in multicellular ventricular preparations. Examination of APs and K+ currents from the same myocytes by alternate recording under current-clamp and voltage-clamp modes revealed that changes in AP duration were closely correlated with temperature-specific changes in the voltage-dependent rectification of the background inward rectifier K+ current IK1. In approximately 15% of myocytes (4 out of 27), IK,ATP-dependent shortening of AP followed the IK1-induced AP shortening. Thus heat stress-induced shortening of AP duration in crucian carp ventricle is primarily dependent on IK1. IK,ATP is induced only in response to prolonged temperature elevation or perhaps in the presence of additional stressors.  相似文献   

18.
Summary The effects of ADP upon the gating of ATP-sensitive K+ channels from rat ventricular myocytes have been investigated by patch-clamp single-channel current recording experiments. ADP was applied to the internal surface of excised insideout membrane patches and depending upon the experimental protocol and the concentration it was found that ADP could either inhibit or stimulate openings of ATP-sensitive K+ channels. In the absence of inactivation, ATP-sensitive K+ channels were inhibited by ADP in a dose-dependent manner. Partially inactivated channels, on the other hand, were stimulated by low (10 to 250 M) and inhibited by high (>250 M) concentrations of ADP. ATP-sensitive K+ channels which were being inhibited by ATP (<1 mM) could be opened by the simultaneous application of ADP (50 M to 1 mM). ADP had no effect upon channels inhibited by mM concentrations of ATP. The situation was further complicated when it was found that inhibition evoked by ADP was strongly attenuated by the presence of Mg2+ ions whilst channel stimulation, whether of partially inactivated channels or channels inhibited by ATP, required the presence of Mg2+ ions. The analog of ADP, ADPS, always evoked inhibition of ATP-sensitive K+ channels which was not affected by the presence or absence of Mg2+ ions.  相似文献   

19.
Some ectothermic vertebrates show unusually good tolerance to oxygen shortage and it is therefore assumed that they might, as a defense mechanism, decrease number or activity of ion channels in order to reduce membrane leakage and thereby ATP-dependent ion pumping in hypoxia. Although several studies have provided indirect evidence in favor of this channel arrest hypothesis, only few experiments have examined activity of ion channels directly from animals exposed to chronic hypoxia or anoxia in vivo. Here we compare the inwardly rectifying K+ current (IK1), a major leak and repolarizing K+ pathway of the heart, in cardiac myocytes of normoxic and hypoxic crucian carp, using the whole-cell and cell-attached single-channel patch-clamp methods. Whole-cell conductance of IK1 was 0.5 ± 0.04 nS/pF in normoxic fish and did not change during the 4 weeks hypoxic (O2 < 0.4 mg/l; 2.68 mmHg) period, meanwhile the activity of Na+/K+ATPase decreased 33%. Single-channel conductance of the IK1 was 20.5 ± 0.8 pS in control fish and 21.4 ± 1.1pS in hypoxic fish, and the open probability of the channel was 0.80 ± 0.03 and 0.74 ± 0.04 (P > 0.05) in control and hypoxic fish, respectively. Open and closed times also had identical distributions in normoxic and hypoxic animals. These results suggest that the density and activity of the inward rectifier K+ channel is not modified by chronic hypoxia in ventricular myocytes of the crucian carp heart. It is concluded that instead of channel arrest, the hypoxic fish cardiac myocytes obtain energy savings through action potential arrest due to hypoxic bradycardia.  相似文献   

20.
In cardiac myocytes, cromakalim (BRL 34915), a potassium channel opener, activates a time-independent K+ current exhibiting poor voltage-sensitivity. This effect of cromakalim is antagonized by low concentrations of glibenclamide, a specific blocker of ATP-dependent K+ channels in cardiac cells. Direct recording of the activity of K+ channels in inside-out membrane patches, confirmed that cromakalim is a potent activator of ATP-dependent K+ channels in cardiac myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号