首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The mitochondrial phospholipid cardiolipin (CL) has been implicated with mitochondrial morphology, function, and cell proliferation. Changes in CL are often paralleled by changes in the lipid environment of mitochondria that may contribute to mitochondrial function and proliferation. This study aimed to separate the effects of CL content and CL composition from cellular free fatty acid distribution on bioenergetics and proliferation in C6 glioma cells. To this end, cardiolipin synthase and the CL remodelling enzyme, tafazzin, were knocked-down by siRNA in C6 cells. After 72?h of cultivation, we analysed CL composition by means of LC/MS/MS, distribution of cellular fatty acids by means of gas chromatography, and determined oxygen consumption and proliferation. Knock-down of cardiolipin synthase affected the cellular CL content in the presence of linoleic acid (LA) in the culture medium. Knock-down of tafazzin had no consequence with respect to the pattern of cellular fatty acids but caused a decrease in cell proliferation. It significantly changed the distribution of molecular CL species, increased CL content, decreased oxygen consumption, and decreased cell proliferation when cultured in the presence of linoleic acid (LA). The addition of linoleic acid to the culture medium caused significant changes in the pattern of cellular fatty acids and the composition of molecular CL species. These data suggest that tafazzin is required for efficient bioenergetics and for proliferation of glioma cells. Supplementation of fatty acids can be a powerful tool to direct specific changes in these parameters.  相似文献   

2.
3.
The two non-bilayer forming mitochondrial phospholipids cardiolipin (CL) and phosphatidylethanolamine (PE) play crucial roles in maintaining mitochondrial morphology. We have shown previously that CL and PE have overlapping functions, and the loss of both is synthetically lethal. Because the lack of CL does not lead to defects in the mitochondrial network in Saccharomyces cerevisiae, we hypothesized that PE may compensate for CL in the maintenance of mitochondrial tubular morphology and fusion. To test this hypothesis, we constructed a conditional mutant crd1Δpsd1Δ containing null alleles of CRD1 (CL synthase) and PSD1 (mitochondrial phosphatidylserine decarboxylase), in which the wild type CRD1 gene is expressed on a plasmid under control of the TET(OFF) promoter. In the presence of tetracycline, the mutant exhibited highly fragmented mitochondria, loss of mitochondrial DNA, and reduced membrane potential, characteristic of fusion mutants. Deletion of DNM1, required for mitochondrial fission, restored the tubular mitochondrial morphology. Loss of CL and mitochondrial PE led to reduced levels of small and large isoforms of the fusion protein Mgm1p, possibly accounting for the fusion defect. Taken together, these data demonstrate for the first time in vivo that CL and mitochondrial PE are required to maintain tubular mitochondrial morphology and have overlapping functions in mitochondrial fusion.  相似文献   

4.
The Caenorhabditis elegans teneurin ortholog, ten-1, plays an important role in gonad and pharynx development. We found that lack of TEN-1 does not affect germline proliferation but leads to local basement membrane deficiency and early gonad disruption. Teneurin is expressed in the somatic precursor cells of the gonad that appear to be crucial for gonad epithelialization and basement membrane integrity. Ten-1 null mutants also arrest as L1 larvae with malformed pharynges and disorganized pharyngeal basement membranes. The pleiotropic phenotype of ten-1 mutant worms is similar to defects found in basement membrane receptor mutants ina-1 and dgn-1 as well as in the mutants of the extracellular matrix component laminin, epi-1. We show that the ten-1 mutation is synthetic lethal with mutations of genes encoding basement membrane components and receptors due to pharyngeal or hypodermal defects. This indicates that TEN-1 could act redundantly with integrin INA-1, dystroglycan DGN-1, and laminin EPI-1 in C. elegans development. Moreover, ten-1 deletion sensitizes worms to loss of nidogen nid-1 causing a pharynx unattached phenotype in ten-1;nid-1 double mutants. We conclude that TEN-1 is important for basement membrane maintenance and/or adhesion in particular organs and affects the function of somatic gonad precursor cells.  相似文献   

5.
Cardiolipin (CL) plays a key role in dynamic organization of bacterial and mitochondrial membranes. CL forms membrane domains in bacterial cells, and these domains appear to participate in binding and functional regulation of multi-protein complexes involved in diverse cellular functions including cell division, energy metabolism, and membrane transport. Visualization of CL domains in bacterial cells by the fluorescent dye 10-N-nonyl acridine orange is critically reviewed. Possible mechanisms proposed for CL dynamic localization in bacterial cells are discussed. In the mitochondrial membrane CL is involved in organization of multi-subunit oxidative phosphorylation complexes and in their association into higher order supercomplexes. Evidence suggesting a possible role for CL in concert with ATP synthase oligomers in establishing mitochondrial cristae morphology is presented. Hypotheses on CL-dependent dynamic re-organization of the respiratory chain in response to changes in metabolic states and CL dynamic re-localization in mitochondria during the apoptotic response are briefly addressed.  相似文献   

6.
We investigated the control of proliferation and differentiation in the larval Caenorhabditis elegans hermaphrodite germ line through analysis of glp-1 and lag-2 mutants, cell ablations, and ultrastructural data. After the first several rounds of germ cell division, GLP-1, a receptor of the LIN-12/Notch family, governs germline proliferation. We analyzed the proximal proliferation (Pro) phenotype in glp-1(ar202) and found that initial meiosis was delayed and spatially mispositioned. This is due, at least in part, to a heightened response of the mutant GLP-1 receptor to multiple sources of the somatic ligand LAG-2, including the proximal somatic gonad. We investigated whether proximal LAG-2 affects germline proliferation in the wild type. Our results indicate that (1) LAG-2 is necessary for GLP-1-mediated germline proliferation and prevention of early meiosis, and (2) several distinct anatomical sources of LAG-2 in the larval somatic gonad functionally overlap to promote proliferation and prevent early meiosis. Ultrastructural studies suggest that mitosis is not restricted to areas of direct DTC-germ line contact and that the germ line shares a common cytoplasm in larval stages. We propose that downregulation of the GLP-1 signaling pathway in the proximal germ line at the time of meiotic onset is under tight temporal and spatial control.  相似文献   

7.
Cardiolipin (CL), a unique mitochondrial phospholipid synthesized by CL synthase (CLS), plays important, yet not fully understood, roles in mitochondria-dependent apoptosis. We manipulated CL levels in HeLa cells by knocking down CLS using RNA interference and selected a clone of CL-deficient cells with ~ 45% of its normal content. ESI–MS analysis showed that the CL molecular species were the same in CL-deficient and CL-sufficient cells. CL deficiency did not change mitochondrial functions (membrane potential, reactive oxygen species generation, cellular ATP levels) but conferred resistance to apoptosis induced by actinomycin D (ActD), rotenone, or γ-irradiation. During ActD-induced apoptosis, decreased CL peroxidation along with suppressed cytochrome (cyt) c release was observed in CL-deficient cells, whereas Bax translocation to mitochondria remained similar to that in CL-sufficient HeLa cells. The amounts of loosely bound cyt c (releasable under high ionic strength conditions) were the same in CL-deficient and CL-sufficient cells. Given that CL peroxidation during apoptosis is catalyzed by CL/cyt c complexes and CL oxidation products are essential for cyt c release from mitochondria, our results suggest that CL deficiency prevents adequate assembly of productive CL/cyt c complexes and CL peroxidation, resulting in increased resistance to apoptosis.  相似文献   

8.
Xu X  Guo H  Wycuff DL  Lee M 《Experimental cell research》2007,313(11):2465-2475
During Caenorhabditis elegans ovulation, the somatic gonad integrates signals from germ cells and propels a mature oocyte into the spermatheca for fertilization. Previous work suggests that phosphoinositide signaling plays important roles in C. elegans fertility. To fully understand inositol-1,4,5-trisphosphate (IP(3)) signaling in ovulation, we have examined the function of phosphatidylinositol-4-phosphate 5' kinase (PIP5K) in C. elegans. Our results show that the C. elegans PIP5K homolog, ppk-1, is essential for ovulation in C. elegans; ppk-1 is mainly expressed in somatic gonad, and depletion of ppk-1 expression causes defective ovulation, reduced gonad sheath contractility, and sterility. Increased IP(3) signaling compensates for ppk-1 (RNAi)-induced sterility, suggesting that ppk-1 is linked to IP(3) signaling. These results demonstrate that ppk-1 plays an essential role in IP(3) signaling and cytoskeleton organization in somatic gonad.  相似文献   

9.
10.
Like other organs, the C. elegans gonad develops from a simple primordium that must undergo axial patterning to generate correct adult morphology. Proximal/distal (PD) polarity in the C. elegans gonad is established early during gonadogenesis by the somatic gonad precursor cells, Z1 and Z4. Z1 and Z4 each divide asymmetrically to generate one daughter with a proximal fate and one with a distal fate. PD polarity of the Z1/Z4 lineages requires the activity of a Wnt pathway that activates the TCF/LEF homolog pop-1. How the gonadal pathway controlling pop-1 is regulated by upstream factors has been unclear, as neither Wnt nor Dishevelled (Dsh) proteins have been shown to be required. Here we show that the C. elegansdsh homolog dsh-2 controls gonadal polarity. As in pop-1 mutants, dsh-2 hermaphrodites have Z1 and Z4 lineage defects indicative of defective PD polarity and are missing gonadal arms. Males have an elongated but disorganized gonad, also with lineage defects. DSH-2 protein is expressed in the Z1/Z4 gonadal precursor cells. Asymmetric distribution of nuclear GFP::POP-1 in Z1 and Z4 daughter cells is reversed in dsh-2 mutants, with higher levels in distal than proximal daughters. dsh-2 and the frizzled receptor homolog lin-17 have a strong genetic interaction, suggesting that they act in a common pathway. We suggest that DSH-2 functions as an upstream regulator of POP-1 in the somatic gonad to control asymmetric cell division, thereby establishing proximal-distal polarity of the developing organ.  相似文献   

11.
12.
Interactions between the somatic gonad and the germ line influence the amplification, maintenance, and differentiation of germ cells. In Caenorhabditis elegans, the distal tip cell/germline interaction promotes a mitotic fate and/or inhibits meiosis through GLP-1/Notch signaling. However, GLP-1-mediated signaling alone is not sufficient for a wild-type level of germline proliferation. Here, we provide evidence that specific cells of the somatic gonadal sheath lineage influence amplification, differentiation, and the potential for tumorigenesis of the germ line. First, an interaction between the distal-most pair of sheath cells and the proliferation zone of the germ line is required for larval germline amplification. Second, we show that insufficient larval germline amplification retards gonad elongation and thus delays meiotic entry. Third, a more severe delay in meiotic entry, as is exhibited in certain mutant backgrounds, inappropriately juxtaposes undifferentiated germ cells with cells of the proximal sheath lineage, leading to the formation of a proximal germline tumor derived from undifferentiated germ cells. Tumors derived from dedifferentiated germ cells, however, respond to the proximal interaction differently depending on the mutant background. Our study underscores the importance of strict developmental coordination between neighboring tissues. We discuss these results in the context of mechanisms that may underlie tumorigenesis.  相似文献   

13.
Cardiolipin (CL) is a unique dimeric phospholipid localized primarily in the mitochondrial membrane. In eukaryotes, the enzyme CL synthase catalyses the synthesis of CL from two lipid substrates, CDP-diacylglycerol and phosphatidylglycerol. In earlier studies, we reported the purification of CL synthase from Saccharomyces cerevisiae and the cloning of the gene CRD1 (previously called CLS1 ) that encodes the enzyme. Because CL is an important component of the mitochondrial membrane, knowledge of its regulation will provide insight into the biogenesis of this organelle. To understand how CL synthesis is regulated, we analysed CRD1 expression by Northern blot analysis of RNA extracted from cells under a variety of growth conditions. CRD1 expression is regulated by mitochondrial development factors. CRD1 levels were 7- to 10-fold greater in stationary than in logarithmic growth phase, and threefold greater in wild-type than in ρ0 mutants. Expression was somewhat elevated during growth in glycerol/ethanol versus glucose media. In contrast, CRD1 expression was not regulated by the phospholipid precursors inositol and choline, and was not altered in the regulatory mutants ino2 , ino4 and opi1 . Mutations in cytochrome oxidase assembly, which led to reduced Crd1p enzyme activity, did not affect CRD1 expression. The crd1 null mutant makes a truncated CRD1 message. Although the null mutant can grow on both fermentable and non-fermentable carbon sources at lower temperatures, it cannot form colonies at 37°C. In conclusion, CRD1 expression is controlled by factors affecting mitochondrial development, but not by the phospholipid precursors inositol and choline. Expression of CRD1 is essential for growth at elevated temperatures, suggesting that either CL or Crd1p is required for an essential cellular function.  相似文献   

14.
In most animal species, germ cells require intimate contact with specialized somatic cells in the gonad for their proper development. We have analyzed the establishment of germ cell-soma interaction during embryonic gonad formation in Drosophila melanogaster, and find that somatic cells undergo dramatic changes in cell shape and individually ensheath germ cells as the gonad coalesces. Germ cell ensheathment is independent of other aspects of gonad formation, indicating that separate morphogenic processes are at work during gonadogenesis. The cell-cell adhesion molecule Drosophila E-cadherin is essential both for germ cell ensheathment and gonad compaction, and is upregulated in the somatic gonad at the time of gonad formation. Our data indicate that differential cell adhesion contributes to cell sorting and the formation of proper gonad architecture. In addition, we find that Fear of Intimacy, a novel transmembrane protein, is also required for both germ cell ensheathment and gonad compaction. E-cadherin expression in the gonad is dramatically decreased in fear of intimacy mutants, indicating that Fear of Intimacy may be a regulator of E-cadherin expression or function.  相似文献   

15.
The mitochondrial phospholipid cardiolipin (CL) has been implicated with mitochondrial morphology, function and, more recently, with cellular proliferation. Tafazzin, an acyltransferase with key functions in CL remodeling determining actual CL composition, affects mitochondrial oxidative phosphorylation. Here, we show that the CRISPR-Cas9 mediated knock-out of tafazzin (Taz) is associated with substantial alterations of various mitochondrial and cellular characteristics in C6 glioma cells. The knock-out of tafazzin substantially changed the profile of fatty acids incorporated in CL and the distribution of molecular CL species. Taz knock-out was further associated with decreased capacity of oxidative phosphorylation that mainly originates from impaired complex I associated energy metabolism in C6 glioma cells. The lack of tafazzin switched energy metabolism from oxidative phosphorylation to glycolysis indicated by lower respiration rates, membrane potential and higher levels of mitochondria-derived reactive oxygen species but keeping the cellular ATP content unchanged. The impact of tafazzin on mitochondria was also indicated by altered morphology and arrangement in tafazzin deficient C6 glioma cells. In the cells we observed tafazzin-dependent changes in the distribution of cellular fatty acids as an indication of altered lipid metabolism as well as in stability/morphology. Most impressive is the dramatic reduction in cell proliferation in tafazzin deficient C6 glioma cells that is not mediated by reactive oxygen species. Our data clearly indicate that defects in CL phospholipid remodeling trigger a cascade of events including modifications in CL linked to subsequent alterations in mitochondrial and cellular functions.  相似文献   

16.
Leacock SW  Reinke V 《Genetics》2008,178(1):295-306
In Caenorhabditis elegans, germ granules called P granules are directly inherited from mother to daughter and segregate with the germ lineage as it separates from the soma during initial embryonic cell divisions. Here we define meg-1 and meg-2 (maternal-effect germ-cell defective), which are expressed in the maternal germline and encode proteins that localize exclusively to P granules during embryonic germline segregation. Localization of MEG-1 to P granules depends upon the membrane-bound protein MES-1. meg-1 mutants exhibit multiple germline defects: P-granule mis-segregation in embryos, underproliferation and aberrant P-granule morphology in larval germ cells, and ultimately, sterility as adults. The penetrance of meg-1 phenotypes increases when meg-2 is also absent. Loss of the P-granule component pgl-1 in meg-1 mutants increases germ-cell proliferation, while loss of glh-1 decreases proliferation. Because meg-1 is provided maternally but its action is required in the embryonic germ lineage during segregation from somatic lineages, it provides a critical link for ensuring the continuity of germline development from one generation to the next.  相似文献   

17.
Cardiolipin: Setting the beat of apoptosis   总被引:4,自引:0,他引:4  
Cardiolipin (CL) is a mitochondria-specific phospholipid which is known to be intimately linked with the mitochondrial bioenergetic machinery. Accumulating evidence now suggests that this unique lipid also has active roles in several of the mitochondria-dependant steps of apoptosis. CL is closely associated with cytochrome c at the outer leaflet of the mitochondrial inner membrane. This interaction makes the process of cytochrome c release from mitochondria more complex than previously assumed, requiring more than pore formation in the mitochondrial outer membrane. While CL peroxidation could be crucial for enabling cytochrome c dissociation from the mitochondrial inner membrane, cytochrome c itself catalyzes CL peroxidation. Moreover, peroxy-CL directly activates the release of cytochrome c and other apoptogenic factors from the mitochondria. CL is also directly involved in mitochondrial outer membrane permeabilization by enabling docking and activation of pro-apoptotic Bcl-2 proteins. It appears therefore that CL has multiple roles in apoptosis and that CL metabolism contributes to the complexity of the apoptotic process.  相似文献   

18.
In the just-metamorphosed juveniles of Ciona intestinalis, a round mass of tissue debris derived from the resorbed tadpole tail is situated in the broad space enclosed by the peritoneal membrane and the epidermis around the ventral side of the esophagus. In living juveni es, the origin of the gonad rudiment was traced back to the mass of tissue debris. Electron microscopically, the round mass was a clump of irregular-shaped phagocytotic cells engulfing degenerated cell fragments. On the surface of the cell clump, a small number of singly occurring round cells were found and identified as primordial germ cells on the basis of morphological continuity to obvious germ cells in later stages. Presence of nuage around the nucleus characterized the germ cells. In a few days the germ cells assembled to form a solid slender body (gonad rudiment) together with smaller somatic cells. The gonad rudiment left the space around the esophagus, moving into the narrow mesenteric space connecting the stomach and intestine on the fourth day after metamorphosis. It gradually increased in size by proliferation of the germ cells and somatic cells. The solid gonad rudiment changed into an oval vesicle with an eccentrically located cavity on about the seventh day after metamorphosis. The vesicle comprised a thinner wall made of a simple epithelium without germ cells and a thicker wall containing germ cells and somatic cells.  相似文献   

19.
The mitochondrial phospholipid (CL) has been linked to mitochondrial and cellular functions. It has been postulated that the composition of CL is of impact for mitochondrial energy metabolism and cell proliferation. Although a correlation between CL composition and proliferation could be demonstrated for several cell types, evidence for a causal relationship remains obscure. Here, we applied two independent approaches, i) supplementation of fatty acids and ii) knock-out of the phospholipid remodeling enzyme tafazzin, to manipulate CL composition and analyzed the response on proliferation of C6 glioma cells. Both strategies caused substantial changes in the distribution of cellular fatty acids as well as in the distribution of fatty acids incorporated in CL that were accompanied by changes of the composition of molecular CL species. These changes did not correlate with cell proliferation. However, knock-out of tafazzin caused dramatic reduction in proliferation of C6 glioma cells independent of CL composition. The mechanism of tafazzin-dependent restriction of proliferation remains unclear. Among the various fatty acids administered only palmitic acid restricted cell proliferation by induction of cell death.  相似文献   

20.
In eukaryotic cells, the phospholipid cardiolipin (CL) is primarily found in the inner mitochondrial membrane. Saccharomyces cerevisiae mutants, unable to synthesize CL because of a null allele of the CRD1 gene (encodes CL synthase), have been reported with different phenotypes. Some mutants, when grown on a nonfermentable carbon source at elevated temperatures, exhibit mitochondrial DNA instability, loss of viability, and significant defects in several functions that rely on the mitochondrial energy transducing system (ETS). These mutants also lack the immediate precursor to CL, phosphatidylglycerol (PG), when grown on glucose as a carbon source. Other mutants show reduced growth efficiency on a nonfermentable carbon source but much milder phenotypes associated with growth at elevated temperatures and increased levels of PG when grown on glucose. We present evidence that mitochondrial DNA instability, loss of viability, and defects in the ETS exhibited at elevated temperatures by some mutants are caused by the reduced expression of the PET56 gene in the presence of the his3 Delta 200 allele and not the lack of CL alone. We also found that PG is present and elevated in all crd1 Delta strains when grown on glucose. A supermolecular complex between complex III and complex IV of the mitochondrial ETS detected in wild type cells was missing in all of the above crd1 Delta cells. The level of components of the ETS was also reduced in crd1 Delta cells grown at elevated temperatures because of reduced gene expression and not reduced stability. These results suggest that all phenotypes reported for cells carrying the his3 Delta 200 allele and lacking CL should be re-evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号