首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytochrome c oxidase vesicles were used to show that, under appropriate experimental conditions: (1) no net deprotonation of the vesicular membrane or of the incorporated enzyme occurs during the oxidation of ferrocytochrome c; (2) the pH equilibration kinetics of a respiration-induced pH gradient across the bilayer are a simple function of the ohmic proton-conductance properties of the membrane; (3) a fairly constant stoichiometry (0.8-0.7) of the numbers of protons pumped per molecule of ferrocytochrome c oxidized, i.e. the H+/e- ratio, over a wide range of dioxygen molecules reduced (1-12) is observed.  相似文献   

2.
Prevention of leak in the proton pump of cytochrome c oxidase   总被引:1,自引:0,他引:1  
The cytochrome c oxidases (CcO), which are responsible for most O(2) consumption in biology, are also redox-linked proton pumps that effectively convert the free energy of O(2) reduction to an electrochemical proton gradient across mitochondrial and bacterial membranes. Recently, time-resolved measurements have elucidated the sequence of events in proton translocation, and shed light on the underlying molecular mechanisms. One crucial property of the proton pump mechanism has received less attention, viz. how proton leaks are avoided. Here, we will analyse this topic and demonstrate how the key proton-carrying residue Glu-242 (numbering according to the sequence of subunit I of bovine heart CcO) functions as a valve that has the effect of minimising back-leakage of the pumped proton.  相似文献   

3.
The operation of cytochrome c oxidase with ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine as substrate in antimycin-A-inhibited rat liver mitochondria is coupled to proton ejection. Measurements of the initial rate of valinomycin-dependent K+ uptake have shown that nearly 4 K+ are taken up as 2 electrons are transferred from cytochrome c to oxygen. This proves directly that a charge separation of nearly 4 occurs across the inner mitochondrial membrane each time 2 electrons are transferred to oxygen. Measurements of the initial rate of proton movement after addition of the reductant show that about 1.6 protons are released by the mitochondria as 2 electrons are transferred from cytochrome c to oxygen. The data support the suggestion of a proton pump coupled to the operation of cytochrome c oxidase [Wikstr?m, M. F. K. (1977) Nature (Lond.) 266, 271--273].  相似文献   

4.
5.
The stimulation of sodium transport by aldosterone in target tissues requires the synthesis of both mRNA and proteins. Aldosterone-induced mRNA and proteins have been demonstrated in toad urinary bladder and rat kidney. We have isolated total RNA and poly(A)-containing RNA from hormone-treated and untreated toad bladder mucosal cells for translation in a rabbit reticulocyte lysate system. Aldosterone-induced proteins synthesized in this system have physical properties similar to those of aldosterone-induced proteins synthesized in the intact toad bladder.  相似文献   

6.
Proteoliposomes reconstituted from purified cytochrome c oxidase of Pseudomonas AM1 and from a heptyl beta-D-thioglucoside-extract of its membranes showed respiratory control but did not show H+ pumping upon a pulse with reduced cytochrome c. The stoichiometries of respiration-dependent H+ translocation in the resting cells respiring ascorbate via N,N,N',N'-tetramethyl-p-phenylenediamine were measured by the oxygen-pulse and initial rate methods. The apparent H+/O ratio of about 2 was due to 2H+ release from the hydrogen-donating substrate. These results strongly suggested that Pseudomonas AM1 does not pump H+ intrinsically, although the enzyme catalyzes electron transfer across the membranes.  相似文献   

7.
Respiratory heme-copper oxidases are integral membrane proteins that catalyze the reduction of molecular oxygen to water using electrons donated by either quinol (quinol oxidases) or cytochrome c (cytochrome c oxidases, CcOs). Even though the X-ray crystal structures of several heme-copper oxidases and results from functional studies have provided significant insights into the mechanisms of O2 -reduction and, electron and proton transfer, the design of the proton-pumping machinery is not known. Here, we summarize the current knowledge on the identity of the structural elements involved in proton transfer in CcO. Furthermore, we discuss the order and timing of electron-transfer reactions in CcO during O2 reduction and how these reactions might be energetically coupled to proton pumping across the membrane.  相似文献   

8.
Cytochrome c oxidase is a redox-driven proton pump, which couples the reduction of oxygen to water to the translocation of protons across the membrane. The recently solved x-ray structures of cytochrome c oxidase permit molecular dynamics simulations of the underlying transport processes. To eventually establish the proton pump mechanism, we investigate the transport of the substrates, oxygen and protons, through the enzyme. Molecular dynamics simulations of oxygen diffusion through the protein reveal a well-defined pathway to the oxygen-binding site starting at a hydrophobic cavity near the membrane-exposed surface of subunit I, close to the interface to subunit III. A large number of water sites are predicted within the protein, which could play an essential role for the transfer of protons in cytochrome c oxidase. The water molecules form two channels along which protons can enter from the cytoplasmic (matrix) side of the protein and reach the binuclear center. A possible pumping mechanism is proposed that involves a shuttling motion of a glutamic acid side chain, which could then transfer a proton to a propionate group of heme α3. Proteins 30:100–107, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
In cytochrome c oxidase, oxido-reductions of heme a/Cu(A) and heme a3/Cu(B) are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e- cooperative linkage at Fe(a3)/Cu(B) is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e- linkage at heme a (and Cu(A)). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/Cu(A) and heme a3/Cu(B) in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R-->O transition), reductive (O-->R transition) and a full catalytic cycle (R-->O-->R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e- linkage at heme a/Cu(A) and heme a3/Cu(B) with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.  相似文献   

10.
Cytochrome c oxidase is essential for aerobic life as a membrane-bound energy transducer. O(2) reduction at the haem a(3)-Cu(B) centre consumes electrons transferred via haem a from cytochrome c outside the membrane. Protons are taken up from the inside, both to form water and to be pumped across the membrane (M.K.F. Wikstr?m, Nature 266 (1977) 271; M. Wikstr?m, K. Krab, M. Saraste, Cytochrome Oxidase, A Synthesis, Academic Press, London, 1981 ). The resulting electrochemical proton gradient drives ATP synthesis (P. Mitchell, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, UK, 1966 ). Here we present a molecular mechanism for proton pumping coupled to oxygen reduction that is based on the unique properties of water in hydrophobic cavities. An array of water molecules conducts protons from a conserved glutamic acid, either to the Delta-propionate of haem a(3) (pumping), or to haem a(3)-Cu(B) (water formation). Switching between these pathways is controlled by the redox-state-dependent electric field between haem a and haem a(3)-Cu(B), which determines the water-dipole orientation, and therefore the proton transfer direction. Proton transfer via the propionate provides a gate to O(2) reduction. This pumping mechanism explains the unique arrangement of the metal cofactors in the structure. It is consistent with the large body of biochemical data, and is shown to be plausible by molecular dynamics simulations.  相似文献   

11.
Electrostatic control of proton pumping in cytochrome c oxidase   总被引:2,自引:0,他引:2  
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway.  相似文献   

12.
The interaction of solvent water protons with the bound paramagnetic metal ions of beef heart cytochrome c oxidase has been examined. The observed proton relaxation rates of enzyme solutions had a negative temperature dependence, indicating a rapid exchange between solvent protons in the coordination sphere of the metal ions and bulk solvent. An analysis of the dependence of the proton relaxation rate on the observation frequency indicated that the correlation time, which modulates the interaction between solvent protons and the unpaired electrons on the metal ions, is due to the electron spin relaxation time of the heme irons of cytochrome c oxidase. This means that at least one of the hemes is exposed to solvent. The proton relaxation rate of the oxidized enzyme was found to be sensitive to changes in ionic strength and to changes in the spin states of the metal ions. Heme a3 was found to be relatively inaccessible to bulk solvent. Partial reduction of the enzyme caused a slight increase in the relaxation rate, which may be due to a change in the antiferromagnetic coupling between two of the bound paramagnetic centers. Further reduction resulted in a decreased relaxation rate, and the fully reduced enzyme was no longer sensitive to changes in ionic strength. The binding of cytochrome c to cytochrome c oxidase had little effect on the proton relaxation rates of oxidized cytochrome oxidase indicating that cytochrome c binding has little effect on solvent accessibility to the metal ion sites.  相似文献   

13.
Cytochrome c oxidase is not a proton pump.   总被引:10,自引:0,他引:10  
J Moyle  P Mitchell 《FEBS letters》1978,88(2):268-272
We conclude that the reduction of O2 to 2 H2O by cytochrome c oxidase of rat liver mitochondria involves the translocation of 4-from cytochrome c at the outer surface of the cristae membrane per O2 reduced and protonated by 4 H+ ions that enter the reaction domain from the inner aqueous phase. This net electron-translocating function of cytochrome c oxidase plugged through the mitochondrial cristae membrane is not linked to a proton-pumping function, such as that proposed by Wikstr?m [7,8].  相似文献   

14.
Structural and functional observations are reviewed which provide evidence for a central role of redox Bohr effect linked to the low-spin heme a in the proton pump of bovine heart cytochrome c oxidase. Data on the membrane sidedness of Bohr protons linked to anaerobic oxido-reduction of the individual metal centers in the liposome reconstituted oxidase are analysed. Redox Bohr protons coupled to anaerobic oxido-reduction of heme a (and Cu(A)) and Cu(B) exhibit membrane vectoriality, i.e. protons are taken up from the inner space upon reduction of these centers and released in the outer space upon their oxidation. Redox Bohr protons coupled to anaerobic oxido-reduction of heme a(3) do not, on the contrary, exhibit vectorial nature: protons are exchanged only with the outer space. A model of the proton pump of the oxidase, in which redox Bohr protons linked to the low-spin heme a play a central role, is described. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

15.
16.
Since its discovery [Nature 266 (1977) 271], the function of cytochrome c oxidase (and other haem-copper oxidases) as a redox-driven proton pump has been subject of both intense research and controversy, and is one of the key unsolved issues of bioenergetics and of biochemistry more generally. Despite the fact that the mechanism of proton translocation is not yet fully understood on the molecular level, many important details and principles have been learned. In the hope of accelerating progress, some of these will be reviewed here, together with a brief presentation of a novel proton pump mechanism, and of the emergence of a molecular basis for control of its efficiency.  相似文献   

17.
18.
In mitochondria and many aerobic bacteria cytochrome c oxidase is the terminal enzyme of the respiratory chain where it catalyses the reduction of oxygen to water. The free energy released in this process is used to translocate (pump) protons across the membrane such that each electron transfer to the catalytic site is accompanied by proton pumping. To investigate the mechanism of electron-proton coupling in cytochrome c oxidase we have studied the pH-dependence of the kinetic deuterium isotope effect of specific reaction steps associated with proton transfer in wild-type and structural variants of cytochrome c oxidases in which amino-acid residues in proton-transfer pathways have been modified. In addition, we have solved the structure of one of these mutant enzymes, where a key component of the proton-transfer machinery, Glu286, was modified to an Asp. The results indicate that the P3-->F3 transition rate is determined by a direct proton-transfer event to the catalytic site. In contrast, the rate of the F3-->O4 transition, which involves simultaneous electron transfer to the catalytic site and is characteristic of any transition during CytcO turnover, is determined by two events with similar rates and different kinetic isotope effects. These reaction steps involve transfer of protons, that are pumped, via a segment of the protein including Glu286 and Arg481.  相似文献   

19.
The H+/e- stoichiometry of reconstituted cytochrome c oxidase from bovine kidney, containing subunit VIaL (liver type), is 0.5 under standard conditions but 1.0 on addition of 1% cardiolipin to the lipid mixture (asolectin). Low concentrations of palmitate (half-maximal effect at 0.5 microm), but not laurate, myristate, stearate, oleate, 1-hexadecanol, palmitoyl glycerol and palmitoyl CoA, decreased the H+/e- ratio in the presence of cardiolipin from 1.0 to 0.5, accompanied by an increase of coupled, but not of uncoupled respiration of proteoliposomes. Cardiolipin and palmitate did not influence the H+/e- stoichiometry and respiration of reconstituted cytochrome c oxidase from bovine heart, containing subunit VIaH (heart-type). The H+/e- stoichiometry of the heart enzyme, however, is decreased from 1.0 to 0.5 by 5 mm intraliposomal ATP (instead of 5 mm ADP). It is assumed that palmitate binds to subunit VIaL. The partial uncoupling of proton pumping in cytochrome c oxidase is suggested to participate in mammalian thermogenesis.  相似文献   

20.
The functionality of membrane proteins is often modulated by the surrounding membrane. Here, we investigated the effect of membrane reconstitution of purified cytochrome c oxidase (CytcO) on the kinetics and thermodynamics of internal electron and proton-transfer reactions during O(2) reduction. Reconstitution of the detergent-solubilized enzyme in small unilamellar soybean phosphatidylcholine vesicles resulted in a lowering of the pK(a) in the pH dependence profile of the proton-uptake rate. This pK(a) change resulted in decreased proton-uptake rates in the pH range of ~6.5-9.5, which is explained in terms of lowering of the pK(a) of an internal proton donor within CytcO. At pH 7.5, the rate decreased to the same extent when vesicles were prepared from the pure zwitterionic lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or the anionic lipid 1,2-dioleoyl-sn-glycero-3-phospho(1-rac-glycerol) (DOPG). In addition, a small change in the internal Cu(A)-heme a electron equilibrium constant was observed. This effect was lipid-dependent and explained in terms of a lower electrostatic potential within the membrane-spanning part of the protein with the anionic DOPG lipids than with the zwitterionic DOPC lipids. In conclusion, the data show that the membrane significantly modulates internal charge-transfer reactions and thereby the function of the membrane-bound enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号