首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane proteins constitute about one third of proteins encoded by all genomes, but only a small percentage have their structures deposited in the Protein Data Bank. One bottleneck in the pipeline from expression to structure determination is the identification of detergents that maintain the protein in a soluble, stable, and active state. Here, we describe a small‐scale automated procedure to easily and rapidly screen detergents for the solubilization and purification of membrane proteins, to perform detergent exchange, or to identify conditions preserving protein interactions in complexes. Hundreds of conditions can be tested in a few hours to select detergents that keep proteins folded and nonaggregated, from single membrane preparations of cells overexpressing the protein(s) of interest. Thirty‐one prokaryotic, eukaryotic, and viral membrane proteins were analyzed by our small‐scale procedure to identify the best‐associated detergents. Examples of results obtained with a bitopic and multitopic membrane proteins and membrane protein complexes are presented in more detail. DDM, DM, DMNG, TritonX‐100, LAPAO, and Fos‐12 appeared effective for successful membrane solubilization and protein purification of most selected targets. Eukaryotic proteins are in general more difficult to extract and purify from Escherichia coli membranes than prokaryotic proteins. The protocol has been developed for His‐tagged proteins, but can readily be adapted to other affinity tags by adjusting the chromatography resin and the buffer composition.  相似文献   

2.
This review focuses on the use of spectroscopic techniques for the study of membrane solubilization, reconstitution, and permeabilization by detergents. Turbidity and light scattering, visible and infrared spectroscopic methods, fluorescence, nuclear magnetic resonance, electron spin resonance and X-ray diffraction are examined from the point of view of their applicability to the above detergent-mediated phenomena. A short introduction is provided about each of the techniques, and references are given for further study.  相似文献   

3.
Purified membrane proteins are ternary complexes consisting of protein, lipid, and detergent. Information about the amounts of detergent and endogenous phospholipid molecules bound to purified membrane proteins is largely lacking. In this systematic study, three model membrane proteins of different oligomeric states were purified in nine different detergents at commonly used concentrations and characterized biochemically and biophysically. Detergent-binding capacities and phospholipid contents of the model proteins were determined and compared. The insights on ternary complexes obtained from the experimental results, when put into a general context, are summarized as follows. 1), The amount of detergent and 2) the amount of endogenous phospholipids bound to purified membrane proteins are dependent on the size of the hydrophobic lipid-accessible protein surface areas and the physicochemical properties of the detergents used. 3), The size of the detergent and lipid belt surrounding the hydrophobic lipid-accessible surface of purified membrane proteins can be tuned by the appropriate choice of detergent. 4), The detergents n-nonyl-β-D-glucopyranoside and Cymal-5 have exceptional delipidating effects on ternary complexes. 5), The types of endogenous phospholipids bound to membrane proteins can vary depending on the detergent used for solubilization and purification. 6), Furthermore, we demonstrate that size-exclusion chromatography can be a suitable method for estimating the molecular mass of ternary complexes. The findings presented suggest a strategy to control and tune the numbers of detergent and endogenous phospholipid molecules bound to membrane proteins. These two parameters are potentially important for the successul crystallization of membrane proteins for structure determination by crystallographic approaches.  相似文献   

4.
Alkanoyl-N-methylglucamides, nonionic detergents, were utilized to solubilize membrane proteins of Escherichia coli and were used to reconstitute them into liposomes. First, critical micelle concentrations (CMC) of nonanoyl-N-methylglucamide and decanoyl-N-methylglucamide were determined to be 25 mM and 7 mM, respectively, by photometric assay. Then solubilization and reconstitution of the melibiose transport carrier were performed using these detergents at concentrations above the CMC. Melibiose counterflow activity was observed with the proteoliposomes reconstituted from the extracted proteins and phospholipids. The proton-translocating ATPase complex (F1-F0) was also solubilized with these detergents. These results indicate that nonanoyl- and decanoyl-N-methylglucamide are useful detergents for solubilization and reconstitution of membrane proteins.  相似文献   

5.
The pattern of solubilization of nine kidney microvillar ectoenzymes by a range of detergents distinguished two classes of membrane proteins: those released from the membrane by bacterial phosphatidylinositol-specific phospholipase C and those not so released. The latter group of transmembrane proteins were solubilized efficiently (greater than 80%) by all the detergents examined. In contrast, proteins released by phosphatidylinositol-specific phospholipase C were solubilized effectively only by octyl glucoside, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulphonate and sodium deoxycholate. Octyl glucoside solubilized the amphipathic forms of the ectoenzymes examined, suggesting that this may be a useful detergent in the purification of glycosyl-phosphatidylinositol-anchored ectoenzymes.  相似文献   

6.
Mild non-ionic detergents are indispensable in the isolation of intact integral membrane proteins and protein-complexes from biological membranes. Dodecylmaltoside (DM) belongs to this class of detergents being a glucoside-based surfactant with a bulky hydrophilic head group composed of two sugar rings and a non-charged alkyl glycoside chain. Two isomers of this molecule exist, differing only in the configuration of the alkyl chain around the anomeric center of the carbohydrate head group, axial in α-DM and equatorial in β-DM. In this paper, we have investigated the solubilizing properties of α-DM and β-DM on the isolation of photosynthetic complexes from pea thylakoids membranes maintaining their native architecture of stacked grana and stroma lamellae. Exposure of these stacked thylakoids to a single step treatment with increasing concentrations (5-100mM) of α-DM or β-DM resulted in a quick partial or complete solubilization of the membranes. Regardless of the isomeric form used: 1) at the lowest DM concentrations only a partial solubilization of thylakoids was achieved, giving rise to the release of mainly small protein complexes mixed with membrane fragments enriched in PSI from stroma lamellae; 2) at concentrations above 30mM a complete solubilization occurred with the further release of high molecular weight protein complexes identified as dimeric PSII, PSI-LHCI and PSII-LHCII supercomplexes. However, at concentrations of detergent which fully solubilized the thylakoids, the α and β isomeric forms of DM exerted a somewhat different solubilizing effect on the membranes: higher abundance of larger sized PSII-LHCII supercomplexes retaining a higher proportion of LHCII and lower amounts of PSI-LHCI intermediates were observed in α-DM treated membranes, reflecting the mildness of α-DM compared with its isomer. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

7.
Transferrin-membrane protein complexes were solubilized either with 0.4% sodium dodecyl sulfate (SDS), 1% Triton X-100 or 0.5% sulfobetaine 3-14 from the plasma membranes of rabbit reticulocytes previously labeled with 125I and then incubated with 131-labeled transferrin. When the solubilized membranes were analyzed by gel filtration fractionation, marked variation in the preservation of transferrin-transferrin receptor interaction was noted between the three detergents. After SDS solubilization, more than 80% of the 131I-labeled transferrin remained associated with membrane proteins with apparent molecular weight of the transferrin-receptor complexes of 1400 000 and 240 000. In contrast, after Triton X-100 solubilization only 40% of the transferrin was still complexed to membrane proteins with an apparent molecular weight of the complex of 450 000. Dissociation of transferrin from its receptor was most marked following sulfobetaine solubilization, with less than 30% of the transferrin still complexed. Following gel filtration 131I-labeled transferrin-125I-labeled membrane protein complexes were immunoprecipitated with goat specific anti-rabbit transferrin antibodies. The immunoprecipitates were analyzed under stringent dissociating conditions by two SDS-polyacrylamide gel electrophoretic techniques. In a linear 5-25% polyacrylamide gradient the 125I-labeled receptor obtained after membrane solubilization with all three detergents had an apparent molecular weight of 80 000. In contrast, in a different system using 10% polyacrylamide gel two 125I-labeled receptor components were detected wih apparent molecular weights of 90 000 and 80 000. These results demonstrate that estimates of the molecular weight of the transferrin receptor depended on the conditions of electrophoresis and suggest that the transferrin receptor is partially modified, perhaps by glycosylation.  相似文献   

8.
膜蛋白在诸多生物过程,如呼吸作用、光合作用、信号识别和分子转运等方面发挥着重要作用,近年来,去污剂的快速发展,在一定程度上极大地推动了膜蛋白研究的进展。去污剂广泛应用于膜蛋白的提取、增溶、纯化、理化性质及结构研究,然而如何选择合适的去污剂往往是一项复杂的任务。本文从以下两个方面入手系统地描述了去污剂的重要理化性质及其在膜蛋白结构功能研究中的应用,(1)去污剂结构及其对去污剂性质和水溶性的影响,去污剂形成胶束的条件及影响去污剂胶束形成的其他因素。希望这些关于去污剂的基本性质和参数的介绍,可以为相关科研工作者选用去污剂提供一个理论依据。(2)去污剂抽提膜蛋白的流程和注意细节,去污剂对膜蛋白纯化时分子量测定的影响,膜蛋白研究中去污剂的置换与去除,膜蛋白结构、功能研究案例归纳。希望这些应用细节、课题研究,可以为相关科研工作者研究膜蛋白结构功能时提供一个经验借鉴。  相似文献   

9.
膜蛋白在诸多生物过程,如呼吸作用、光合作用、信号识别和分子转运等方面发挥着重要作用,近年来,去污剂的快速发展,在一定程度上极大地推动了膜蛋白研究的进展。去污剂广泛应用于膜蛋白的提取、增溶、纯化、理化性质及结构研究,然而如何选择合适的去污剂往往是一项复杂的任务。本文从以下两个方面入手系统地描述了去污剂的重要理化性质及其在膜蛋白结构功能研究中的应用,(1)去污剂结构及其对去污剂性质和水溶性的影响,去污剂形成胶束的条件及影响去污剂胶束形成的其他因素。希望这些关于去污剂的基本性质和参数的介绍,可以为相关科研工作者选用去污剂提供一个理论依据。(2)去污剂抽提膜蛋白的流程和注意细节,去污剂对膜蛋白纯化时分子量测定的影响,膜蛋白研究中去污剂的置换与去除,膜蛋白结构、功能研究案例归纳。希望这些应用细节、课题研究,可以为相关科研工作者研究膜蛋白结构功能时提供一个经验借鉴。  相似文献   

10.
《Molecular membrane biology》2013,30(5-8):139-155
Abstract

Detergents are amphiphilic compounds that have crucial roles in the extraction, purification and stabilization of integral membrane proteins and in experimental studies of their structure and function. One technique that is highly dependent on detergents for solubilization of membrane proteins is solution-state NMR spectroscopy, where detergent micelles often serve as the best membrane mimetic for achieving particle sizes that tumble fast enough to produce high-resolution and high-sensitivity spectra, although not necessarily the best mimetic for a biomembrane. For achieving the best quality NMR spectra, detergents with partial or complete deuteration can be used, which eliminate interfering proton signals coming from the detergent itself and also eliminate potential proton relaxation pathways and strong dipole-dipole interactions that contribute line broadening effects. Deuterated detergents have also been used to solubilize membrane proteins for other experimental techniques including small angle neutron scattering and single-crystal neutron diffraction and for studying membrane proteins immobilized on gold electrodes. This is a review of the properties, chemical synthesis and applications of detergents that are currently commercially available and/or that have been synthesized with partial or complete deuteration. Specifically, the detergents are sodium dodecyl sulphate (SDS), lauryldimethylamine-oxide (LDAO), n-octyl-β-D-glucoside (β-OG), n-dodecyl-β-D-maltoside (DDM) and fos-cholines including dodecylphosphocholine (DPC). The review also considers effects of deuteration, detergent screening and guidelines for detergent selection. Although deuterated detergents are relatively expensive and not always commercially available due to challenges associated with their chemical synthesis, they will continue to play important roles in structural and functional studies of membrane proteins, especially using solution-state NMR.  相似文献   

11.
Membrane proteins, lipids and detergents: not just a soap opera   总被引:1,自引:0,他引:1  
Studying membrane proteins represents a major challenge in protein biochemistry, with one of the major difficulties being the problems encountered when working outside the natural lipid environment. In vitro studies such as crystallization are reliant on the successful solubilization or reconstitution of membrane proteins, which generally involves the careful selection of solubilizing detergents and mixed lipid/detergent systems. This review will concentrate on the methods currently available for efficient reconstitution and solubilization of membrane proteins through the use of detergent micelles, mixed lipid/detergent micelles and bicelles or liposomes. We focus on the relevant molecular properties of the detergents and lipids that aid understanding of these processes. A significant barrier to membrane protein research is retaining the stability and function of the protein during solubilization, reconstitution and crystallization. We highlight some of the lessons learnt from studies of membrane protein folding in vitro and give an overview of the role that lipids can play in stabilizing the proteins.  相似文献   

12.
During the past few years, three-dimensional crystal structures of many of the important integral membrane proteins responsible for the bioenergetic processes of photosynthesis and respiration have been determined. Moreover, a few crystal structures of protein-protein complexes have become available that characterize the interaction between those membrane proteins and the electron carrier protein cytochrome c. Here, we address the association kinetics for binding of cytochrome c to cytochrome c oxidase (COX) from Paracoccus denitrificans by Brownian dynamics simulations. The effects of ionic strength and protein mutations were studied for two different cytochrome c species: the positively charged, dipolar horse heart cytochrome c and the negatively charged physiological electron transfer partner cytochrome c(552). We studied association toward "naked" COX and toward membrane-embedded COX where the membrane is represented as an uncharged DPPC bilayer modeled in atomistic detail. For the nonnatural association toward "naked" COX, the association rates are >100 times larger for horse heart cytochrome c than for cytochrome c(552). Interestingly, the presence of the lipid bilayer leads to a dramatic decrease of the association rate of horse heart cytochrome c, but slightly enhances association of cytochrome c(552), leading to very similar association rates of both proteins to membrane-embedded COX. This finding from computational modeling studies may reflect the optimization of surface patches and of the total net charge on electron transfer pairs in nature.  相似文献   

13.
The mechanism of influenza virus hemagglutinin (HA)-mediated membrane fusion has been inferred in part from studies examining pH-induced structural changes in soluble HA derivatives lacking the viral membrane anchor and, sometimes, the fusion peptide (the C- and N-terminal residues of the HA2 chain, respectively). To reconcile structure-based mechanisms of HA-mediated membrane fusion with structural implications of functional studies performed on membrane-embedded HA, we have undertaken attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic analyses of membrane-embedded HA (strain X:31) and its fragments reconstituted into supported lipid bilayers. The fragments correspond to proteolytic products with the majority of the HA1 chain and, in some cases, the fusion peptide removed (THA2 and THA2F-, respectively). In combination with R18 fluorescence dequenching to monitor the functional implications of HA1 subunit removal, we have assessed the influence of pH and target membrane presentation on the secondary structures, orientations relative to the membrane, and dynamics of these molecules. We find that X:31 HA is more tilted towards the plane of the membrane under fusion than under resting conditions, that the fitting of HA depends on the presence of the HA1 chain, that the residues connecting the membrane-inserted fusion peptide with the crystallographically determined coiled coil probably adopt an alpha-helical conformation, and that several changes in the secondary structure and the amide H/D exchange kinetics occur as a result of acidification and target membrane presentation, which can be interpreted as small changes and a release of strain in the static and dynamic structure of membrane-bound HA. THA2 mediatcs fusion, but less efficiently and with less pH-selectivity than HA.  相似文献   

14.
Over 50 detergents were tested to establish which would be most effective in releasing proteins from membrane-bounded compartments without denaturating them. Various concentrations of each detergent were tested for two activities: (1) solubilization of egg phospholipid liposomes as measured by reduction of turbidity and (2) effect of detergent concentration on the activities of soluble, hydrolytic enzymes. Those detergents must effective in solubilizing 0.2% lipid and least detrimental to enzymes were five pure, synthetic compounds recently introduced: CHAPS, CHAPSO, Zwittergents 310 and 312, and octylglucoside. Industrial detergents were generally much inferior, insofar as they solubilized membranes inefficiently and/or inactivated certain hydrolytic enzymes readily. The five detergents were characterized by (a) an unusually high critical micelle concentration and (b) a preference for forming mixed micelles with lipids instead of forming pure micelles, as indicated by an ability to solubilize lipid at concentrations of detergent significantly below the critical micelle concentration. This characteristic permits solubilization of high concentrations of membrane below the critical micelle concentration of the detergent so that protein denaturation is minimized. A generally applicable guideline that emerged from this study is that detergents should be used at approximately their critical micelle concentration which should not be exceeded by the concentration of membrane. Similar considerations should apply to the use of detergents in purifying and reconstituting intrinsic membrane proteins.  相似文献   

15.
We have examined the ability of nonionic detergents to solubilize thyroid peroxidase from a porcine thyroid particulate fraction, as measured by the release of peroxidase activity into the supernatant fraction after centrifugation at 105,000 X g for 1 hour and the retardation of the supernatant peroxidase of Sepharose 6B. The parameters of peroxidase solubilization by Triton X-100 have been investigated in detail. Under optimum conditions, 60 to 95% of the thryoid peroxidase and about 50% of the total protein is released into the 105,000 X g, 1-hour supernatant. Under the optimum conditions established with Triton X-100, a series of Brij detergents of different chemical structure were equally effective in releasing peroxidase and protein. The protein patterns of the supernatants obtained with these detergents were similar on sodium dodecyl sulfate-polyacrylamide electrophoresis gels, suggesting that the detergents studied release similar membrane proteins. The Triton X-100 and Brij 58 supernatants were chromatographed separately on Sepharose 6B equilibrated with 0.1% Triton X-100 or Brij 58, respectively. In both cases, 75 to 80% of the peroxidase activity was retarded, thereby indicating that the nonionic detergents effect solubilization of the peroxidase rather than dispersal of nonsedimentable membrane fragments. These studies report the first successful solubilization of thyroid peroxidase by nonionic detergents. Together with previous evidence from our laboratory, these experiments indicate that thyroid peroxidase is an integral membrane protein.  相似文献   

16.
The effects of the non-ionic detergents Triton X-100 and n-octyl beta-D-glucopyranoside on energy transfer between pigment-protein complexes of Pisum sativum thylakoids were investigated. This was done by monitoring the 77K fluorescence-emission characteristics of stacked and unstacked thylakoids exposed to a range of detergent concentrations. At sub-critical micellar concentrations, the detergents had little effect, whereas above these concentrations they caused increases of up to 20-fold in short-wavelength fluorescence intensity and a shift in its maximum wavelength from 685 to 680 nm. Fluorescence-emission intensities at 695 and 735 nm were relatively unaffected by detergent treatments, although Triton X-100 caused a wavelength shift in the emission peak from 735 to 728 nm. The results are discussed in terms of reversible dissociation of pigment-protein complexes induced by mild detergent solubilization and the consequent cessation of inter-complex energy transfer.  相似文献   

17.
Abstract  Bottlenecks in expression, solubilization, purification and crystallization hamper the structural study of integral membrane proteins (IMPs). Successful crystallization is critically dependent on the purity, stability and oligomeric homogeneity of an IMP sample. These characteristics are in turn strongly influenced by the type and concentration of the detergents used in IMP preparation. By utilizing the techniques and analytical tools we earlier developed for the characterization of protein-detergent complexes (PDCs) [21], we demonstrate that for successful protein extraction from E. coli membrane fractions, the solubilizing detergent associates preferentially to IMPs rather than to membrane lipids. Notably, this result is contrary to the generally accepted mechanism of detergent-mediated IMP solubilization. We find that for one particular member of the family of proteins studied (E. coli receptor kinases, which is purified in mixed multimeric states and oligomerizes through its transmembrane region), the protein oligomeric composition is largely unaffected by a 10-fold increase in protein concentration, by alteration of micelle properties through addition of other detergents to the PDC sample, or by a 20-fold variation in the detergent concentration used for solubilization of the IMP from the membrane. We observed that the conditions used for expression of the IMP, which impact protein density in the membrane, has the greatest influence on the IMP oligomeric structure. Finally, we argue that for concentrating PDCs smaller than 30 kDa, stirred concentration cells are less prone to over-concentration of detergent and are therefore more effective than centrifugal ultrafiltration devices.  相似文献   

18.
Complexes of melittin with detergents and phospholipids have been characterized by fluorescence, circular dichroism, ultracentrifugation, quasi-elastic light scattering and 1H nuclear magnetic resonance (NMR) experiments. By ultracentrifugation and quasi-elastic light-scattering measurements it is shown that melittin forms stoichiometrically well-defined complexes with dodecylphosphocholine micelles consisting of one melittin molecule and approximately forty detergent molecules. Evidence from fluorescence, circular dichroism and 1H nuclear magnetic resonance experiments indicates that the conformation of melittin bound to micelles of various detergents or of diheptanoyl phosphatidylcholine is largely independent of the type of lipid and furthermore appears to be quite closely related to the conformation of melittin bound to phosphatidylcholine bilayers. 1H NMR is used to investigate the conformation of micelle-bound melittin in more detail and to compare certain aspects of the melittin conformation in the micelles with the spatial structures of monomeric and self-aggregated tetrameric melittin in aqueous solution. The experience gained with this system demonstrates that high resolution NMR of complexes of membrane proteins with micelles provides a viable method for conformational studies of membrane proteins.  相似文献   

19.
Target size analysis by radiation inactivation is widely used for molecular weight determination of membrane enzymes and receptors in situ without the need for prior solubilization or purification. However, since most molecular weight data available in the literature on membrane proteins involve the use of detergents for solubilization, the target sizes of membrane proteins in situ and after solubilization by detergent treatment have been compared. Using data from the literature and personal results, three different types of behavior of membrane proteins in presence of detergents were found: (i) uncoupling of subunits (electric eel acetylcholinesterase, placental steroid sulfatase, and human nonspecific β-glucosidase); (ii) coupling of protein molecules (mouse liver neuraminidase, and rat liver insulin receptor regulatory component); and (iii) no major change in quaternary structure (rat liver insulin receptor, kidney γ-glutamyltransferase, asialoglycoprotein receptor, insulin degrading enzyme, and human leucocyte neuraminidase). For all these proteins, there is a statistically significant increase in target size of about 24% over the value obtained in situ without detergent. A relatively large body of literature data involving a variety of membrane proteins, membrane types, and irradiation conditions (electron accelerators or 60Co sources, and proteins irradiated in lyophilized form or frozen solution) was examined, and it was concluded that target sizes of membrane proteins, irradiated in the presence of Triton X-100, should be diminished by a factor of about 24% to obtain the molecular weight value.  相似文献   

20.
Despite the major interest in membrane proteins at functional, genomic, and therapeutic levels, their biochemical and structural study remains challenging, as they require, among other things, solubilization in detergent micelles. The complexity of this task derives from the dependence of membrane protein structure on their anisotropic environment, influenced by a delicate balance between many different physicochemical properties. To study such properties in a small protein–detergent complex, we used fluorescence measurements and molecular dynamics (MD) simulations on the transmembrane part of glycophorin A (GpAtm) solubilized in micelles of dihexanoylphosphatidylcholine (DHPC) detergent. Fluorescence measurements show that DHPC has limited ability to solubilize the peptide, while MD provides a possible molecular explanation for this. We observe that the detergent molecules are balanced between two different types of interactions: cohesive interactions between detergent molecules that hold the micelle together, and adhesive interactions with the peptide. While the cohesive interactions are detergent mediated, the adhesion to the peptide depends on the specific interactions between the hydrophobic parts of the detergent and the topography of the peptide dictated by the amino acids. The balance between these two parameters results in a certain frustration of the system and rather slow equilibration. These observations suggest how molecular properties of detergents could influence membrane protein stabilization and solubilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号