首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
The recent discovery that it is possible to directly reprogramme somatic cells to an embryonic stem (ES) cell-like pluripotent state, by retroviral transduction of just four genes (Oct3/4, Sox2, c-Myc and Klf4), represents a major breakthrough in stem cell research. The reprogrammed cells, known as induced pluripotent stem (iPS) cells, possess many of the properties of ES cells, and represent one of the most promising sources of patient-specific cells for use in regenerative medicine. While the ultimate goal is the use of iPS cells in the treatment of human disease, much of the research to date has been carried out with murine cells, and improved mouse iPS cells have been shown to contribute to live chimeric mice that are germ-line competent. Very recently, it has been reported that iPS cells can be generated by three factors without c-Myc, and these cells give rise to chimeric mice with a reduced risk of tumour development.  相似文献   

5.
6.
7.
8.
Induced pluripotent stem (iPS) cells established by introduction of the transgenes POU5F1 (also known as Oct3/4), SOX2, KLF4 and c-MYC have competence similar to embryonic stem (ES) cells. iPS cells generated from cynomolgus monkey somatic cells by using genes taken from the same species would be a particularly important resource, since various biomedical investigations, including studies on the safety and efficacy of drugs, medical technology development, and research resource development, have been performed using cynomolgus monkeys. In addition, the use of xenogeneic genes would cause complicating matters such as immune responses when they are expressed. In this study, therefore, we established iPS cells by infecting cells from the fetal liver and newborn skin with amphotropic retroviral vectors containing cDNAs for the cynomolgus monkey genes of POU5F1, SOX2, KLF4 and c-MYC. Flat colonies consisting of cells with large nuclei, similar to those in other primate ES cell lines, appeared and were stably maintained. These cell lines had normal chromosome numbers, expressed pluripotency markers and formed teratomas. We thus generated cynomolgus monkey iPS cell lines without the introduction of ecotropic retroviral receptors or other additional transgenes by using the four allogeneic transgenes. This may enable detailed analysis of the mechanisms underlying the reprogramming. In conclusion, we showed that iPS cells could be derived from cynomolgus monkey somatic cells. To the best of our knowledge, this is the first report on iPS cell lines established from cynomolgus monkey somatic cells by using genes from the same species.  相似文献   

9.
10.
The recent establishment of induced pluripotent stem (iPS) cells promises the development of autologous cell therapies for degenerative diseases, without the ethical concerns associated with human embryonic stem (ES) cells. Initially, iPS cells were generated by retroviral transduction of somatic cells with core reprogramming genes. To avoid potential genotoxic effects associated with retroviral transfection, more recently, alternative non-viral gene transfer approaches were developed. Before a potential clinical application of iPS cell-derived therapies can be planned, it must be ensured that the reprogramming to pluripotency is not associated with genome mutagenesis or epigenetic aberrations. This may include direct effects of the reprogramming method or “off-target” effects associated with the reprogramming or the culture conditions. Thus, a rigorous safety testing of iPS or iPS-derived cells is imperative, including long-term studies in model animals. This will include not only rodents but also larger mammalian model species to allow for assessing long-term stability of the transplanted cells, functional integration into the host tissue, and freedom from undifferentiated iPS cells. Determination of the necessary cell dose is also critical; it is assumed that a minimum of 1 billion transplantable cells is required to achieve a therapeutic effect. This will request medium to long-term in vitro cultivation and dozens of cell divisions, bearing the risk of accumulating replication errors. Here, we review the clinical potential of human iPS cells and evaluate which are the most suitable approaches to overcome or minimize risks associated with the application of iPS cell-derived cell therapies.  相似文献   

11.
12.
Induced pluripotent stem (iPS) cell technology demonstrates that somatic cells can be reprogrammed to a pluripotent state by over-expressing four reprogramming factors. This technology has created an interest in deriving iPS cells from domesticated animals such as pigs, sheep and cattle. Moloney murine leukemia retrovirus vectors have been widely used to generate and study mouse iPS cells. However, this retrovirus system infects only mouse and rat cells, which limits its use in establishing iPS cells from other mammals. In our study, we demonstrate a novel retrovirus strategy to efficiently generate porcine iPS cells from embryonic fibroblasts. We transfected four human reprogramming factors (Oct4, Sox2, Klf4 and Myc) into fibroblasts in one step by using a VSV-G envelope-coated pantropic retrovirus that was easily packaged by GP2-293 cells. We established six embryonic stem (ES)-like cell lines in human ES cell medium supplemented with bFGF. Colonies showed a similar morphology to human ES cells with a high nuclei-cytoplasm ratio and phase-bright flat colonies. Porcine iPS cells could form embryoid bodies in vitro and differentiate into the three germ layers in vivo by forming teratomas in immunodeficient mice.  相似文献   

13.
14.
15.
Increasing evidence suggests that islet cell transplantation for patients with type I diabetes holds great promise for achieving insulin independence. However, the extreme shortage of matched organ donors and the necessity for chronic immunosuppression has made it impossible for this treatment to be used for the general diabetic population. Recent success in generating insulin-secreting islet-like cells from human embryonic stem (ES) cells, in combination with the success in deriving human ES cell-like induced pluripotent stem (iPS) cells from human fibroblasts by defined factors, have raised the possibility that patient-specific insulin-secreting islet-like cells might be derived from somatic cells through cell fate reprogramming using defined factors. Here we confirm that human ES-like iPS cells can be derived from human skin cells by retroviral expression of OCT4, SOX2, c-MYC, and KLF4. Importantly, using a serum-free protocol, we successfully generated insulin-producing islet-like clusters (ILCs) from the iPS cells under feeder-free conditions. We demonstrate that, like human ES cells, skin fibroblast-derived iPS cells have the potential to be differentiated into islet-like clusters through definitive and pancreatic endoderm. The iPS-derived ILCs not only contain C-peptide-positive and glucagon-positive cells but also release C-peptide upon glucose stimulation. Thus, our study provides evidence that insulin-secreting ILCs can be generated from skin fibroblasts, raising the possibility that patient-specific iPS cells could potentially provide a treatment for diabetes in the future.  相似文献   

16.
iPS细胞研究的新进展及应用   总被引:1,自引:0,他引:1  
Qin T  Miao XY 《遗传》2010,32(12):1205-1214
通过导入特定的转录因子可将分化的体细胞重编程为诱导性多能干细胞(Induced pluripotent stem cells,iPS cells),这项技术避免了干细胞研究领域的免疫排斥和伦理道德问题,是生命科学领域的一次巨大革命。与胚胎干细胞(Embryonic stem cells,ES cells)一样,iPS细胞能够自我更新并维持未分化状态,在体内可分化为3个胚层来源的所有细胞,进而参与形成机体所有组织和器官。在体外,iPS细胞可定向诱导分化出多种成熟细胞。因此,iPS细胞在理论研究和临床应用等方面都极具应用价值。文章对iPS细胞诱导的最新研究进展、iPS细胞诱导的不同方法,如何提高iPS细胞的制备效率和安全性,iPS细胞在基础研究以及临床研究等方面的应用进行了全面综述,并探讨了iPS细胞研究领域面临的问题以及该技术在转基因动物研究中的发展前景。  相似文献   

17.

Background

Given the usefulness of rats as an experimental system, an efficient method for generating rat induced pluripotent stem (iPS) cells would provide researchers with a powerful tool for studying human physiology and disease. Here, we report direct reprogramming of rat neural precursor (NP) cells and rat embryonic fibroblasts (REF) into iPS cells by retroviral transduction using either three (Oct3/4, Sox2, and Klf4), four (Oct3/4, Sox2, Klf4, and c-Myc), or five (Oct3/4, Sox2, Klf4, c-Myc, and Nanog) genes.

Methodology and Principal Findings

iPS cells were generated from both NP and REF using only three (Oct3/4, Sox2, and Klf4) genes without c-Myc. Two factors were found to be critical for efficient derivation and maintenance of rat iPS cells: the use of rat instead of mouse feeders, and the use of small molecules specifically inhibiting mitogen-activated protein kinase and glycogen synthase kinase 3 pathways. In contrast, introduction of embryonic stem cell (ESC) extracts induced partial reprogramming, but failed to generate iPS cells. However, when combined with retroviral transduction, this method generated iPS cells with significantly higher efficiency. Morphology, gene expression, and epigenetic status confirmed that these rat iPS cells exhibited ESC-like properties, including the ability to differentiate into all three germ layers both in vitro and in teratomas. In particular, we found that these rat iPS cells could differentiate to midbrain-like dopamine neurons with a high efficiency.

Conclusions/Significance

Given the usefulness of rats as an experimental system, our optimized method would be useful for generating rat iPS cells from diverse tissues and provide researchers with a powerful tool for studying human physiology and disease.  相似文献   

18.
Among the various kinds of fibroblasts existing in the human body, the periodontal ligament (PDL) fibroblasts have been suggested as multipotent cells. Periodontal ligament fibroblasts are characterized by rapid turnover, a high remodeling capacity and remarkable capacity for renewal and repair. They also differentiate into osteoblasts and cementoblasts. We established iPS cells from human PDL fibroblasts by introducing the ES cell markers Oct3/4, Sox2, Nanog, Klf4 and Lin28 by retrovirus transduction, even without the oncogene c-Myc. The iPS cells established in this study expressed the ES cell markers and formed teratomas in SCID mice. The c-Myc expression level in the PDL fibroblasts was higher than that in the iPS cells by quantitative RT-PCR. Therefore, we have concluded that PDL fibroblasts could be an optimal cell source for iPS cells.  相似文献   

19.
In the field of regenerative medicine, the development of induced pluripotent stem (iPS) cells may represent a potential strategy to overcome the limitations of human embryonic stem cells (ESCs). iPS cells have the potential to mimic human disease, since they carry the genome of the donor. Hypothetically, with iPS cell technology it is possible to screen patients for a genetic cause of disease (genetic mutation), develop cell lines, reprogram them back to iPS cells, finally differentiate them into one or more cell types that develop the disease. Although the creation of multiple lineages with iPS cells can seem limitless, a number of challenges need to be addressed in order to effectively use these cell lines for disease modeling. These include the low efficiency of iPS cell generation without genetic alterations, the possibility of tumor formation in vivo, the random integration of retroviral-based delivery vectors into the genome, and unregulated growth of the remaining cells that are partially reprogrammed and refractory to differentiation. The establishment of protein or RNA-based reprogramming strategies will help generate human iPS cells without permanent genetic alterations. Finally, direct reprogramming strategies can provide rapid production of models of human ??diseases in a dish??, without first passing the cells through a pluripotent state, so avoiding the challenges of time-consumming and labor-intensive iPS cell line generation. This review will overview methods to develop iPS cells, current strategies for direct reprogramming, and main applications of iPS cells as human disease model, focusing on human cardiovascular diseases, with the aim to be a potential information resource for biomedical scientists and clinicians who exploit or intend to exploit iPS cell technology in a range of applications.  相似文献   

20.
Mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have the ability to differentiate in vitro into various cell lineages including neurons. The differentiation of these cells into neurons has potential applications in regenerative medicine. Previously, we reported that a chick dorsal root ganglion (DRG)-conditioned medium (CM) promoted the differentiation of mouse ES and iPS cells into neurons. Here, we used real-time PCR to investigate the differentiation patterns of ES and iPS cells into neurons when DRG-CM was added. DRG-CM promoted the expression levels of βIII-tubulin gene (a marker of postmitotic neurons) in ES and iPS cells. ES cells differentiated into neurons faster than iPS cells, and the maximum peaks of gene expression involved in motor, sensory, and dopaminergic neurons were different. Rho kinase (ROCK) inhibitors could be very valuable at numerous stages in the production and use of stem cells in basic research and eventual cell-based therapies. Thus, we investigated whether the addition of a ROCK inhibitor Y-27632 and DRG-CM on the basis of the differentiation patterns promotes the neuronal differentiation of ES cells. When the ROCK inhibitor was added to the culture medium at the initial stages of cultivation, it stimulated the neuronal differentiation of ES cells more strongly than that stimulated by DRG-CM. Moreover, the combination of the ROCK inhibitor and DRG-CM promoted the neuronal differentiation of ES cells when the ROCK inhibitor was added to the culture medium at day 3. The ROCK inhibitor may be useful for promoting neuronal differentiation of ES cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号