首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our comprehensive expression cloning studies previously revealed that 20 intrinsic xenobiotic exporter systems are encoded in the Escherichia coli chromosome, but most of them are not expressed under normal conditions. In this study, we investigated the compounds that induce the expression of these xenobiotic exporter genes, and found that indole induces a variety of xenobiotic exporter genes including acrD, acrE, cusB, emrK, mdtA, mdtE and yceL. Indole treatment of E. coli cells confers rhodamine 6G and SDS resistance through the induction of mdtEF and acrD gene expression respectively. The induction of mdtE by indole is independent of the EvgSA two-component signal transduction system that regulates the mdtE gene, but mediated by GadX. On the other hand, the induction of acrD and mdtA was mediated by BaeSR and CpxAR, two-component systems. Interestingly, CpxAR system-mediated induction required intrinsic baeSR genes, whereas BaeSR-mediated induction was observed in the cpxAR gene-deletion mutant. BaeR and CpxR directly bound to different sequences of the acrD and mdtA promoter regions. These observations indicate that BaeR is a primary regulator, and CpxR enhances the effect of BaeR.  相似文献   

2.
Receptors for the gaseous phytohormone ethylene show sequence similarity to bacterial two-component histidine kinases. These receptors are encoded by a multigene family that can be divided into subfamilies 1 and 2. It has been previously shown that a subfamily 1 Arabidopsis thaliana ethylene receptor, ETR1, autophosphorylates in vitro on a conserved histidine residue (1). However, sequence comparisons between the five ethylene receptor family members suggest that subfamily 2 members do not have all the motifs necessary for histidine kinase activity. Further, a tobacco subfamily 2 receptor, NTHK1, autophosphorylates on serines and threonines in vitro (2). Here we show that all five Arabidopsis ethylene receptor proteins autophosphorylate in vitro. We analyzed the nature of the phosphorylated amino acids by acid/base stability and bi-dimensional thin layer electrophoresis and demonstrated that unlike ETR1 all other ethylene receptors autophosphorylate predominantly on serine residues. ERS1, the only other subfamily 1 receptor, is able to phosphorylate on both histidine and serine residues in the presence of Mn2+. However, histidine autophosphorylation is lost when ERS1 is assayed in the presence of both Mg2+ and Mn2+, suggesting that this activity may not occur in vivo. Furthermore, mutation of the histidine residue conserved in two-component systems does not abolish serine autophosphorylation, eliminating the possibility of a histidine to serine phosphotransfer. Our biochemical observations complement the recently published genetic data that histidine kinase activity is not necessary for ethylene receptor function in plants and suggest that ethylene signal transduction does not occur through a phosphorelay mechanism.  相似文献   

3.
The arcA (dye) and arcB genes of Escherichia coli are responsible for anaerobic repression of target operons and regulons of aerobic function (the arc modulon). The amino acid sequence of ArcA (Dye) indicated that it is the regulator protein of a two-component control system. Here we show that ArcB is a membrane sensor protein on the basis of its deduced amino acid sequence (778 residues), hydropathicity profile, and cellular distribution. On the carboxyl end of the ArcB sequence there is an additional domain showing homology with conserved regions of regulator proteins. Deletion into this domain destroyed ArcB function. ArcB conserved a histidine residue for autophosphorylation of the sensor proteins, and aspartic residues important for the regulator proteins.  相似文献   

4.
VEGFR-1 is a kinase-defective receptor tyrosine kinase (RTK) and negatively modulates angiogenesis by acting as a decoy receptor. The decoy characteristic of VEGFR-1 is required for normal development and angiogenesis. To date, there is no molecular explanation for this unusual characteristic of VEGFR-1. Here we show that the molecular mechanisms underlying the decoy characteristic of VEGFR-1 is linked to the replacement of a highly conserved amino acid residue in the activation loop. This amino acid is highly conserved among all the type III RTKs and corresponds to aspartic acid, but in VEGFR-1 it is substituted to asparagine. Mutation of asparagine (Asn(1050)) within the activation loop to aspartic acid promoted enhanced ligand-dependent tyrosine autophosphorylation and kinase activation in vivo and in vitro. The mutant VEGFR-1 (Asp(1050)) promoted endothelial cell proliferation but not tubulogenesis. It also displayed an oncogenic phenotype as its expression in fibroblast cells elicited transformation and colony growth. Furthermore, mutation of the invariable aspartic acid to asparagine in VEGFR-2 lowered the autophosphorylation of activation loop tyrosines 1052 and 1057. We propose that the conserved aspartic acid in the activation loop favors the transphosphorylation of the activation loop tyrosines, and its absence renders RTK to a less potent enzyme by disfavoring transphosphorylation of activation loop tyrosines.  相似文献   

5.
6.
7.
Bacteria possess a signal transduction system, referred to as a two-component system, for adaptation to external stimuli. Each two-component system consists of a sensor protein-histidine kinase (HK) and a response regulator (RR), together forming a signal transduction pathway via histidyl-aspartyl phospho-relay. A total of 30 sensor HKs, including as yet uncharacterized putative HKs (BaeS, BasS, CreC, CusS, HydH, RstB, YedV, and YfhK), and a total of 34 RRs, including putative RRs (BaeR, BasR, CreB, CusR, HydG, RstA, YedW, YfhA, YgeK, and YhjB), have been suggested to exist in Escherichia coli. We have purified the carboxyl-terminal catalytic domain of 27 sensor HKs and the full-length protein of all 34 RRs to apparent homogeneity. Self-phosphorylation in vitro was detected for 25 HKs. The rate of self-phosphorylation differed among HKs, whereas the level of phosphorylation was generally co-related with the phosphorylation rate. However, the phosphorylation level was low for ArcB, HydH, NarQ, and NtrB even though the reaction rate was fast, whereas the level was high for the slow phosphorylation species BasS, CheA, and CreC. By using the phosphorylated HKs, we examined trans-phosphorylation in vitro of RRs for all possible combinations. Trans-phosphorylation of presumed cognate RRs by HKs was detected, for the first time, for eight pairs, BaeS-BaeR, BasS-BasR, CreC-CreB, CusS-CusR, HydH-HydG, RstB-RstA, YedV-YedW, and YfhK-YfhA. All trans-phosphorylation took place within less than 1/2 min, but the stability of phosphorylated RRs differed, indicating the involvement of de-phosphorylation control. In addition to the trans-phosphorylation between the cognate pairs, we detected trans-phosphorylation between about 3% of non-cognate HK-RR pairs, raising the possibility that the cross-talk in signal transduction takes place between two-component systems.  相似文献   

8.
Bacteria employ two-component signaling to detect and respond to environmental stimuli. In essence, two-component signaling relies on a protein called a response regulator that can elicit a change in gene expression or protein function in response to phosphoryl transfer from a histidine kinase. Phosphorylation of the associated histidine kinase is regulated by detection of an environmental signal, thus linking sensing to cellular response. Recently, it has been suggested that H-NOX (Heme-nitric oxide/oxygen binding) proteins may act as nitric oxide (NO) sensors in two-component signaling systems. NO/H-NOX regulated histidine kinases have been reported, but their cognate response regulators have yet to be identified. In this work we provide biochemical characterization of a complete NO/H-NOX-regulated two-component signaling pathway in the biofilm-dwelling marine bacterium, Pseudoalteromonas atlantica. In P. atlantica, as is typical for bacteria that code for H-NOX, an hnoX gene is found in the same operon as a gene coding for a two-component signaling histidine kinase (H-NOX-associated histidine kinase; HahK). We find that HahK is capable of autophosphorylation in vitro and that NO-bound H-NOX inhibits HahK activity, implicating H-NOX as a selective NO sensor. The cognate response regulator, a protein annotated as a cyclic-di-GMP processing enzyme that we have named HarR (H-NOX-associated response regulator), was identified using bioinformatics tools. Phosphoryl transfer from HahK to HarR has been established. This report reveals the first biochemical characterization of an H-NOX-associated response regulator and contributes to a deeper understanding of NO/H-NOX signaling in bacteria.  相似文献   

9.
Phosphorylation is a ubiquitous protein post-translational modification that is intimately involved in most aspects of cellular regulation. Currently, most proteomic analyses are performed with phosphorylation searches for serine, threonine, and tyrosine modifications, as the phosphorylated residues of histidine and aspartic acid are acid labile and thus undetectable with most proteomic methodologies. Here, we present a novel buffer system to show histidine phosphorylation of NM23-H1, the product of the first identified putative human metastasis suppressor gene (NME1), which catalyzes the transfer of the γ-phosphate from nucleoside triphosphates to nucleoside diphosphates. On the basis of a pH titration of LC elution buffers and MS/MS identification, recombinant NM23-H1 subjected to autophosphorylation was shown to contain phosphorylated histidine at residue 118 at pH 5 and 6, with each level giving over 75% peptide coverage for identification. The solvent system presented permits the detection of all five possible phosphorylation moieties. Application of histidine and aspartic acid phosphorylation modifications to proteomic analyses will significantly advance the understanding of phosphorylation relay signaling in cellular regulation, including elucidation of the role of NM23-H1 in metastasis.  相似文献   

10.
Nitrate transport activity of the LtnT permease of the cyanobacterium Synechococcus elongatus is activated when LtnA, a response regulator without an effector domain, is phosphorylated by LtnB, a hybrid histidine kinase. We identified a protein (LtnC) that is required for activation of LtnT. LtnC consists of an N-terminal histidine-containing phosphoacceptor (HisKA) domain, a receiver domain, and a unique C-terminal domain found in some cyanobacterial proteins. Because LtnC lacks an ATP-binding kinase domain of a histidine kinase, it is incapable of autophosphorylation, but LtnC is phosphorylated by LtnA. The histidine residue in the HisKA domain but not the aspartate residue in the receiver domain is essential for phosphorylation of LtnC and activation of LtnT. LtnC phosphorylation leads to oligomerization of the protein. Fusion of the C-terminal domain of LtnC to glutathione S-transferase, which forms oligomers, also activates LtnT, suggesting that oligomerization of the LtnC C-terminal domain causes LtnT activation. These results indicate that the C-terminal domain of LtnC acts as an effector domain that directs the output of the signal from the phosphorelay system. The two-step (His-Asp-His) phosphorelay system, composed of the LtnB, LtnA, and LtnC proteins, is distinct from the known phosphorelay systems, namely, the typical two-component system (His-Asp) and the multistep phosphorelay system (His-Asp-His-Asp), because the HisKA domain of LtnC is the terminal phosphoacceptor that determines the signal output. LtnC is a new class of signal transducer in His-Asp phosphorelay systems that contains a HisKA domain and an effector domain.  相似文献   

11.
Summary The biochemical mechanism of phytochrome action is unknown. We have examined the proposal, based on sequence similarities to the sensor histidine kinase components of bacterial two-component signaling systems, that the phytochromes may be functional homologs of these kinases. Four amino acids, three highly conserved between the phytochrome and bacterial kinase molecules and the other, the histidine residue putatively the target of autophosphorylation, were changed singly in the oat phytochrome A sequence by in vitro site-directed mutagenesis, and the resultant mutant photo-receptor molecules were assayed for activity by overexpression in transgenic Arabidopsis. Three of the four mutant molecules retained activity equivalent to that of the unmutagenized parent sequence, whereas the fourth mutant could not be evaluated because of low expression. The data show that the former three mutagenized residues are not essential for phytochrome A function in transgenic Arabidopsis, but, because of the negative nature of the results, the possibility cannot be precluded that the photoreceptor functions as a protein kinase independent of these residues.Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

12.
13.
In bacteria, adaptation to changing environmental conditions is often mediated by two-component signal transduction systems. In the prototypical case, a specific stimulus is sensed by a membrane-bound histidine kinase and triggers autophosphorylation of a histidine residue. Subsequently, the phosphoryl group is transferred to an aspartate residue of the cognate response regulator, which then becomes active and mediates a specific response, usually by activating and/or repressing a set of target genes. In this review, we summarize the current knowledge on two-component signal transduction in Corynebacterium glutamicum. This Gram-positive soil bacterium is used for the large-scale biotechnological production of amino acids and can also be applied for the synthesis of a wide variety of other products, such as organic acids, biofuels, or proteins. Therefore, C. glutamicum has become an important model organism in industrial biotechnology and in systems biology. The type strain ATCC 13032 possesses 13 two-component systems and the role of five has been elucidated in recent years. They are involved in citrate utilization (CitAB), osmoregulation and cell wall homeostasis (MtrAB), adaptation to phosphate starvation (PhoSR), adaptation to copper stress (CopSR), and heme homeostasis (HrrSA). As C. glutamicum does not only face changing conditions in its natural environment, but also during cultivation in industrial bioreactors of up to 500 m(3) volume, adaptability can also be crucial for good performance in biotechnological production processes. Detailed knowledge on two-component signal transduction and regulatory networks therefore will contribute to both the application and the systemic understanding of C. glutamicum and related species.  相似文献   

14.
15.
The protein kinase activity of the DNA-dependent protein kinase (DNA-PK) is required for the repair of DNA double-strand breaks (DSBs) via the process of nonhomologous end joining (NHEJ). However, to date, the only target shown to be functionally relevant for the enzymatic role of DNA-PK in NHEJ is the large catalytic subunit DNA-PKcs itself. In vitro, autophosphorylation of DNA-PKcs induces kinase inactivation and dissociation of DNA-PKcs from the DNA end-binding component Ku70/Ku80. Phosphorylation within the two previously identified clusters of phosphorylation sites does not mediate inactivation of the assembled complex and only partially regulates kinase disassembly, suggesting that additional autophosphorylation sites may be important for DNA-PK function. Here, we show that DNA-PKcs contains a highly conserved amino acid (threonine 3950) in a region similar to the activation loop or t-loop found in the protein kinase domain of members of the typical eukaryotic protein kinase family. We demonstrate that threonine 3950 is an in vitro autophosphorylation site and that this residue, as well as other previously identified sites in the ABCDE cluster, is phosphorylated in vivo in irradiated cells. Moreover, we show that mutation of threonine 3950 to the phosphomimic aspartic acid abrogates V(D)J recombination and leads to radiation sensitivity. Together, these data suggest that threonine 3950 is a functionally important, DNA damage-inducible phosphorylation site and that phosphorylation of this site regulates the activity of DNA-PKcs.  相似文献   

16.
Escherichia coli uses overlapping envelope stress responses to adapt to insults to the bacterial envelope that cause protein misfolding. The sigmaE and Cpx envelope stress responses are activated by both common and distinct envelope stresses and respond by increasing the expression of the periplasmic protease DegP as well as target genes unique to each response. The sigmaE pathway is involved in outer membrane protein (OMP) folding quality control whereas the Cpx pathway plays an important role in the assembly of at least one pilus. Previously, we identified the spy gene as a new Cpx regulon member of unknown function. Interestingly, induction of spy expression by severe envelope stresses such as spheroplasting is only partially dependent on an intact Cpx signalling pathway, unlike other Cpx-regulated genes. Here we show that the BaeS sensor kinase and BaeR response regulator also control expression of spy in response to envelope stress. BaeS and BaeR do not affect expression of other known Cpx-regulated genes, however, baeR cpxR double mutants show increased sensitivity to envelope stresses relative to either single mutant alone. We propose that the Bae signal transduction pathway controls a third envelope stress response in E. coli that induces expression of a distinct set of adaptive genes.  相似文献   

17.
Antizyme, long known to be a non-competitive inhibitor of ornithine decarboxylase, is encoded by the atoC gene in Escherichia coli. The present study reveals another role for AtoC, that of a response regulator of the AtoS-AtoC two component system regulating the expression of the atoDAEB operon upon acetoacetate induction. This operon encodes enzymes involved in short-chain fatty acid catabolism in E. coli. Evidence is presented to show that AtoS is a sensor kinase that together with AtoC constitutes a two-component signal transduction system. AtoS is a membrane protein which can autophosphorylate and then transfer that phosphoryl group to AtoC. This process can also be reproduced in vitro. AtoC contains in its amino acid sequence a conserved aspartic acid (D55), which is the putative phosphorylation site, as well as an unexpected "H box" consensus sequence (SHETRTPV), common to histidine kinases, with the histidine contained therein (H73) being a second potential target for phosphorylation. Substitution of either D55 or H73 in His10-AtoC diminished but did not abrogate AtoC phosphorylation suggesting that either both residues can be phosphorylated independently or that the phosphate group can be transferred between them. However, the D55 mutation in comparison to H73 had a more pronounced effect in vivo, on the activation of atoDAEB promoter after acetoacetate induction, although it was the presence of both mutations that rendered AtoC totally unresponsive to induction. These data provide evidence that the gene products of atoS and atoC constitute a two-component signal transduction system, with some unusual properties, involved in the regulation of the atoDAEB operon.  相似文献   

18.
19.
A mechanism is proposed wherein an essential lysine in porcine pancreatic lipase is the acylable residue in the catalytic mechanism of the enzyme. This mechanism involves an initial interfacial activation step were acylation first takes place in a rate-limiting step on a serine residue assisted by histidine and a carboxyl-containing residue, aspartic acid or glutamic acid, and then in a fast subsequent step the acyl group is transferred to the essential lysine residue at the catalytic site. Indirect support for the mechanism is presented. When the essential lysine is made inactive by reductive methylation, the lipase is functionally converted to a proteinase, as predicted by the mechanism.  相似文献   

20.
二元系统是细菌中主要的信号传导途径 ,磷酸根转移介导的信号途径使细胞得以感受各种环境刺激并产生应答。组氨酸蛋白质激酶的自动磷酸化将磷酸基团传给反应调节蛋白 ,反过来作为分子开关控制不同的效应物活性。蓝藻是地球上最早出现的光合自养原核生物 ,在长期的生物进化过程中 ,它们发展了一系列独特的形态和生理代谢机制 ,使其能在各种不同生境中生长、繁殖和扩增。研究蓝藻信号传导途径为阐明其高度的环境适应性提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号