首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Swallow and esophageal distension-induced relaxations of the lower esophageal sphincter (LES) are associated with an orad movement of the LES because of a concurrent esophageal longitudinal muscle contraction. We hypothesized that the esophageal longitudinal muscle contraction induces a cranially directed mechanical stretch on the LES and therefore studied the effects of a mechanical stretch on the LES pressure. In adult opossums, a silicon tube was placed via mouth into the esophagus and laparotomy was performed. Two needles with silk sutures were passed, 90 degrees apart, through the esophageal walls and silicon tube, 2 cm above the LES. The tube was withdrawn, and one end of each of the four sutures was anchored to the esophageal wall and the other end exited through the mouth to exert graded cranially directed stretch on the LES by using pulley and weights. A cranially directed stretch caused LES relaxation, and with the cessation of stretch there was recovery of the LES pressure. The degree an d duration of LES relaxation increased with the weight and the duration of stretch, respectively. The mean LES relaxation in all animals was 77.7 +/- 4.7%. The required weight to induce maximal LES relaxation differed in animals (714 +/- 348 g). N(G)-nitro-L-arginine, a nitric oxide inhibitor, blocked the axial stretch-induced LES relaxation almost completely (from 78 to 19%). Our data support the presence of an axial stretch-activated inhibitory mechanism in the LES. The role of axial stretch in the LES relaxation induced by swallow and esophageal distension requires further investigation.  相似文献   

2.
Esophageal (ESO) circular muscle contraction and lower esophageal sphincter (LES) tone are PKC dependent. Because MAPKs may be involved in PKC-dependent contraction, we examined ERK1/ERK2 and p38 MAPKs in ESO and LES. In permeabilized LES muscle cells, ERK1/2 antibodies reduced 1,2-dioctanoylglycerol (DG)- and threshold ACh-induced contraction, which are PKC dependent, but not maximal ACh, which is calmodulin dependent. LES tone was reduced by the ERK1/2 kinase inhibitor PD-98059 and by the p38 MAPK inhibitor SB-203580. In permeable ESO cells, ACh contraction was reduced by ERK1/ERK2 and p38 MAPK antibodies and by PD-98059 and SB-203580. ACh increased MAPK activity and phosphorylation of MAPK and of p38 MAPK. The 27-kDa heat shock protein (HSP27) antibodies reduced ACh contraction. HSP27 and p38 MAPK antibodies together caused no greater inhibition than either one alone. p38 MAPK and HSP27 coprecipitated after ACh stimulation, suggesting that HSP27 is linked to p38 MAPK. These data suggest that PKC-dependent contraction in ESO and LES is mediated by the following two distinct MAPK pathways: ERK1/2 and HSP27-linked p38 MAPK.  相似文献   

3.
We recently reported that esophageal contraction reduces esophageal wall perfusion in an animal study. Our aim was to determine esophageal wall blood perfusion (EWBP) during esophageal contraction and transient lower esophageal sphincter relaxations (TLESRs) in humans. We studied 12 healthy volunteers. A custom-designed laser Doppler probe was anchored to the esophageal wall, 4-6 cm above the LES, by use of the Bravo pH system so that the laser light beam stay directed toward the esophageal mucosa. A high-resolution manometry equipped with impedance electrodes recorded esophageal pressures and reflux events. Synchronized pressure, impedance, pH, and EWBP recordings were obtained during dry and wet swallows and following a meal. Stable recordings of laser Doppler EWBP were only recorded when the laser Doppler probe was firmly anchored to the esophageal wall. Esophageal contractions induced by dry and wet swallows resulted in 46 ± 9% and 60 ± 10% reduction in the EWBP, respectively (compared to baseline). Reduction in EWBP was directly related to the amplitude (curvilinear fit) and duration of esophageal contraction. Atropine reduced the esophageal contraction amplitude and decreased the EWBP reduction associated with esophageal contraction. TLESRs were also associated with reduction in the EWBP, albeit of smaller amplitude (29 ± 3%) but longer duration (19 ± 2 s) compared with swallow-induced esophageal contractions. We report 1) an innovative technique to record EWBP for extended time periods in humans and 2) contraction of circular and longitudinal muscle during peristalsis and selective longitudinal muscle contraction during TLESR causes reduction in the EWBP; 3) using our innovative technique, future studies may determine whether esophageal wall ischemia is the cause of esophageal pain/heartburn.  相似文献   

4.
Lower esophageal sphincter (LES) tone depends on PGF(2alpha) and thromboxane A(2) acting on receptors linked to G(i3) and G(q) to activate phospholipases and produce second messengers resulting in muscle contraction. We therefore examined PGF(2alpha) signal transduction in circular smooth muscle cells isolated by enzymatic digestion from cat esophagus (Eso) and LES. In Eso, PGF(2alpha)-induced contraction was inhibited by antibodies against the alpha-subunit of G(13) and the monomeric G proteins RhoA and ADP-ribosylation factor (ARF)1 and by the C3 exoenzyme of Clostridium botulinum. A [(35)S]GTPgammaS-binding assay confirmed that G(13), RhoA, and ARF1 were activated by PGF(2alpha). Contraction of Eso was reduced by propranolol, a phospholipase D (PLD) pathway inhibitor and by chelerythrine, a PKC inhibitor. In LES, PGF(2alpha)-induced contraction was inhibited by antibodies against the alpha-subunit of G(q) and G(i3), and a [(35)S]GTPgammaS-binding assay confirmed that G(q) and G(i3) were activated by PGF(2alpha). PGF(2alpha)-induced contraction of LES was reduced by U-73122 and D609 and unaffected by propranolol. At low PGF(2alpha) concentration, contraction was blocked by chelerythrine, whereas at high concentration, contraction was blocked by chelerythrine and CGS9343B. Thus, in Eso, PGF(2alpha) activates a PLD- and protein kinase C (PKC)-dependent pathway through G(13), RhoA, and ARF1. In LES, PGF(2alpha) receptors are coupled to G(q) and G(i3), activating phosphatidylinositol- and phosphatidylcholine-specific phospholipase C. At low concentrations, PGF(2alpha) activates PKC. At high concentration, it activates both a PKC- and a calmodulin-dependent pathway.  相似文献   

5.
Several studies from our laboratory show that axial stretch of the lower esophageal sphincter (LES) in an oral direction causes neurally mediated LES relaxation. Under physiological conditions, axial stretch of the LES is caused by longitudinal muscle contraction (LMC) of the esophagus. Because longitudinal muscle is composed of skeletal muscle in mice, vagal-induced LMC and LES relaxation are both blocked by pancuronium. We conducted studies in rats (thought to have skeletal muscle esophagus) to determine if vagus nerve-mediated LES relaxation is also blocked by pancuronium. LMC-mediated axial stretch on the LES was monitored using piezoelectric crystals. LES and esophageal pressures were monitored with a 2.5-Fr solid-state pressure transducer catheter. Following bilateral cervical vagotomy, the vagus nerve was stimulated electrically. LES, along with the esophagus, was harvested after in vivo experiments and immunostained for smooth muscle (smooth muscle α-actin) and skeletal muscle (fast myosin heavy chain). Vagus nerve-stimulated LES relaxation and esophageal LMC were reduced in a dose-dependent fashion and completely abolished by pancuronium (96 μg/kg) in six rats (group 1). On the other hand, in seven rats, LES relaxation and LMC were only blocked completely by a combination of pancuronium (group 2) and hexamethonium. Immunostaining revealed that the longitudinal muscle layer was composed of predominantly skeletal muscle in the group 1 rats. On the other hand, the longitudinal muscle layer of group 2 rats contained a significant amount of smooth muscle (P < 0.05). Our study shows tight coupling between axial stretch on the LES and relaxation of the LES, which suggests a cause and effect relationship between the two. We propose that the vagus nerve fibers that cause LMC induce LES relaxation through the stretch-sensitive activation of inhibitory motor neurons.  相似文献   

6.
Contraction of smooth muscle depends on the balance of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. Because MLCK activation depends on the activation of calmodulin, which requires a high Ca2+ concentration, phosphatase inhibition has been invoked to explain contraction at low cytosolic Ca2+ levels. The link between activation of the Ca2+-independent protein kinase C (PKC) and MLC phosphorylation observed in the esophagus (ESO) (Sohn UD, Cao W, Tang DC, Stull JT, Haeberle JR, Wang CLA, Harnett KM, Behar J, and Biancani P. Am J Physiol Gastrointest Liver Physiol 281: G467–G478, 2001), however, has not been elucidated. We used phosphatase and kinase inhibitors and antibodies to signaling enzymes in combination with intact and saponin-permeabilized isolated smooth muscle cells from ESO and lower esophageal sphincter (LES) to examine PKC-dependent, Ca2+-independent signaling in ESO. The phosphatase inhibitors okadaic acid and microcystin-LR, as well as an antibody to the catalytic subunit of type 1 protein serine/threonine phosphatase, elicited similar contractions in ESO and LES. MLCK inhibitors (ML-7, ML-9, and SM-1) and antibodies to MLCK inhibited contraction induced by phosphatase inhibition in LES but not in ESO. The PKC inhibitor chelerythrine and antibodies to PKC, but not antibodies to PKCII, inhibited contraction of ESO but not of LES. In ESO, okadaic acid triggered translocation of PKC from cytosolic to particulate fraction and increased activity of integrin-linked kinase (ILK). Antibodies to the mitogen-activated protein (MAP) kinases ERK1/ERK2 and to ILK, and the MAP kinase kinase (MEK) inhibitor PD-98059, inhibited okadaic acid-induced ILK activity and contraction of ESO. We conclude that phosphatase inhibition potentiates the effects of MLCK in LES but not in ESO. Contraction of ESO is mediated by activation of PKC, MEK, ERK1/2, and ILK. protein kinase C; myosin light chain kinase; phosphatase; integrin-linked kinase  相似文献   

7.
S Yamato  J K Saha  R K Goyal 《Life sciences》1992,50(17):1263-1272
Studies were performed in the opossum to define the role of the L-arginine-nitric oxide (NO) pathway in lower esophageal sphincter (LES) relaxation to swallowing and vagal stimulation in viv and intramural nerve stimulation in vitro. In vivo, L-NAME, a water soluble NO synthase (NOS) inhibitor, caused antagonism of LES relaxation due to reflex-induced swallowing. L-NAME (20 mg/kg i.v.) reduced the amplitude of swallow induced relaxation from 88% to 28%. LES relaxation due to electrical stimulation of peripheral end of decentralized vagus nerve was also antagonized. The effects of L-NAME were reversed by L-arginine, but not by D-arginine. L-NAME treatment did not antagonize LES relaxation to intravenous administration of isoproterenol. In vitro, NO and sodium nitroprusside (SNP) caused a decrease in the sphincter tone. The relaxing effect caused by NO and SNP was not antagonized by tetrodotoxin or omega-conotoxin. Inhibitors of NO synthase, L-NMMA and L-NNA, caused slight increase in the spontaneous resting LES tone and concentration-dependent antagonism of electrical field stimulation (EFS) induced LES relaxation. L-NNA (10(-4)M) abolished EFS induced LES relaxation at low frequencies (less than 5 Hz) and antagonized the relaxation to a value 20% of the control at 20 Hz. The antagonistic action of L-NMMA and L-NNA was unaffected by D-arginine but was reversed by L-arginine. The inhibitory effect of NO, SNP, or two other putative inhibitory neurotransmitters (VIP and CGRP) on the LES was not antagonized by L-NNA. These studies show that inhibitors of NO synthase selectively antagonize LES relaxation to all three modes of intramural inhibitory nerve stimulation including physiological swallowing. These studies suggest that the L-arginine-nitric oxide pathway is involved in physiological relaxation of the LES.  相似文献   

8.
Lower esophageal sphincter (LES) relaxation and esophageal body inhibition co-occur during esophageal peristalsis but not necessarily during pharyngeal stimulation or transient LES relaxation (tLESR). This study examined these relationships and the impact on reflux. Nine young volunteers were studied. An artificial high-pressure zone (HPZ) was established, and pH was recorded 8 and 5 cm proximal to the LES. Pharyngeal stimulation was by water injection and gastric distension with liquid or gas. Peristalsis, pharyngeal stimulation, and spontaneous events were recorded. Swallowing relaxed the LES in 100% of trials (the HPZ in 80%) and caused no reflux. Pharyngeal stimulation relaxed the LES in two-thirds of trials, had no effect on the HPZ, and caused no reflux. Gastric distension was associated with 117 tLESRs, 48% with acid reflux, and 32% with gas reflux; there was no effect on the HPZ. We conclude that LES relaxation is a necessary but not sufficient condition for reflux. LES relaxation and esophageal body inhibition are independent events that may be concurrent (swallowing) or dissociated (tLESR).  相似文献   

9.
Esophageal distension causes simultaneous relaxation of the lower esophageal sphincter (LES) and crural diaphragm. The mechanism of crural diaphragm relaxation during esophageal distension is not well understood. We studied the motion of crural and costal diaphragm along with the motion of the distal esophagus during esophageal distension-induced relaxation of the LES and crural diaphragm. Wire electrodes were surgically implanted into the crural and costal diaphragm in five cats. In two additional cats, radiopaque markers were also sutured into the outer wall of the distal esophagus to monitor esophageal shortening. Under light anesthesia, animals were placed on an X-ray fluoroscope to monitor the motion of the diaphragm and the distal esophagus by tracking the radiopaque markers. Crural and costal diaphragm electromyograms (EMGs) were recorded along with the esophageal, LES, and gastric pressures. A 2-cm balloon placed 5 cm above the LES was used for esophageal distension. Effects of baclofen, a GABA(B) agonist, were also studied. Esophageal distension induced LES relaxation and selective inhibition of the crural diaphragm EMG. The crural diaphragm moved in a craniocaudal direction with expiration and inspiration, respectively. Esophageal distension-induced inhibition of the crural EMG was associated with sustained cranial motion of the crural diaphragm and esophagus. Baclofen blocked distension-induced LES relaxation and crural diaphragm EMG inhibition along with the cranial motion of the crural diaphragm and the distal esophagus. There is a close temporal correlation between esophageal distension-mediated LES relaxation and crural diaphragm inhibition with the sustained cranial motion of the crural diaphragm. Stretch caused by the longitudinal muscle contraction of the esophagus during distension of the esophagus may be important in causing LES relaxation and crural diaphragm inhibition.  相似文献   

10.
Patients with gastroesophageal reflux disease show an increase in esophagogastric junction (EGJ) distensibility and in frequency of transient lower esophageal sphincter relaxations (TLESR) induced by gastric distension. The objective was to study the effect of localized EGJ distension on triggering of TLESR in healthy volunteers. An esophageal manometric catheter incorporating an 8-cm internal balloon adjacent to a sleeve sensor was developed to enable continuous recording of EGJ pressure during distension of the EGJ. Inflation of the balloon doubled the cross-section of the trans-sphincteric portion of the catheter from 5 mm OD (round) to 5 × 11 mm (oval). Ten healthy subjects were included. After catheter placement and a 30-min adaptation period, the EGJ was randomly distended or not, followed by a 45-min baseline recording. Subjects consumed a refluxogenic meal, and recordings were made for 3 h postprandially. A repeat study was performed on another day with EGJ distension status reversed. Additionally, in one subject MRI was performed to establish the exact position of the balloon in the inflated state. The number of TLESR increased during periods of EGJ distension with the effect being greater after a meal [baseline: 2.0(0.0-4.0) vs. 4.0(1.0-11.0), P=0.04; postprandial: 15.5(10.0-33.0) vs. 22.0(17.0-58.0), P=0.007 for undistended and distended, respectively]. EGJ distension augments meal-induced triggering of TLESR in healthy volunteers. Our data suggest the existence of a population of vagal afferents located at sites in/around the EGJ that may influence triggering of TLESR.  相似文献   

11.
The effect of bombesin on the tone and the responses of strips from the lower esophageal sphincter (LES) to field electrical stimulation (FES) (2 Hz, 0.2 ms, supramaximal current intensity, 20 s duration) was studied. Bombesin dose-dependently increased the LES tone. The threshold for this effect was 10(-14) M and was particularly pronounced with a concentration of 10(-8) M. The response reached maximum between the 3rd and the 5th min after application, persisted for 15-20 min, and was followed by a slight time-dependent decrease. Bombesin increased FES-produced relaxation of LES by 39% as compared to the control. The potentiating effect of bombesin on the LES relaxation was also observed after cholinergic and adrenergic receptor blockade. It is concluded that bombesin may modulate the release of cholinergic, adrenergic and noncholinergic, nonadrenergic inhibitory neurotransmitters.  相似文献   

12.
In anaesthetized cats, vagal unitary discharges originating from the Lower Oesophageal Sphincter (L.O.S.) were recorded in nodose ganglia by means of glass microelectrodes. Numerous mechanoreceptors located both in mucosa and muscular layers were found in L.O.S. The mucus mechanoreceptors (high threshold receptors) were activated by strong compressions and distensions, by rapid passage of liquid through the oesophagus and by striking the mucosa. The muscular mechanoreceptors (low threshold receptors) responded to contraction and distension of L.O.S. Both receptors were connected to nonmyelinated fibres (conduction velocity: 0.9-1.4 m/sec).  相似文献   

13.
Nitric oxide (NO) relaxes most smooth muscle, including the circular smooth muscle (CSM) of the esophagus, whereas in the adjacent longitudinal smooth muscle (LSM), it causes contraction. The second messenger pathways responsible for this NO-induced LSM contraction are unclear, given that these opposing effects of NO are both cGMP dependent. In intestinal LSM, but not CSM, cADP ribose (cADPR)-dependent pathways participate in Ca(2+) mobilization and muscle contraction; whether similar differences exist in the esophagus is unknown. The purpose of this study was to determine whether cADPR plays a role in the NO-mediated contraction of opossum esophageal LSM. Standard isometric tension recordings were performed using both LSM and CSM strips from opossum distal esophagus that were hung in 10-ml tissue baths perfused with oxygenated Krebs solution. cADPR produced concentration-dependent contraction of LSM strips with an EC(50) of 1 nM and peak contraction of 57 +/- 18% of the 60 mM KCl-induced contraction. cADPR had no effect on CSM strips at concentrations up to 10(-6) M. The EC(50) of cADPR caused contraction (18 +/- 2% from initial resting length) of isolated LSM cells. Sodium nitroprusside (SNP; 300 muM) induced contraction of LSM strips that averaged 67 +/- 5% of the KCl response. cADPR antagonists 8-bromo-cADPR and 8-amino-cADPR, as well as ryanodine receptor antagonists ryanodine and tetracaine, significantly inhibited the SNP-induced contraction. In conclusion, in the opossum esophagus, 1) cADPR induces contraction of LSM, but not CSM, and 2) NO-induced contraction of LSM appears to involve a cADPR-dependent pathway.  相似文献   

14.
We previously demonstrated that a balance of K+ and Ca2+-activated Cl- channel activity maintained the basal tone of circular smooth muscle of opossum lower esophageal sphincter (LES). In the current studies, the contribution of major K+ channels to the LES basal tone was investigated in circular smooth muscle of opossum LES in vitro. K+ channel activity was recorded in dispersed single cells at room temperature using patch-clamp recordings. Whole-cell patch-clamp recordings displayed an outward current beginning to activate at -60 mV by step test pulses lasting 400 ms (-120 mV to +100 mV) with increments of 20 mV from holding potential of -80 mV ([K+]I = 150 mM, [K+]o = 2.5 mM). However, no inward rectification was observed. The outward current peaked within 50 ms and showed little or no inactivation. It was significantly decreased by bath application of nifedipine, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and iberiotoxin (IBTN). Further combination of TEA with 4-AP, nifedipine with 4-AP, and IBTN with TEA, or vice versa, blocked more than 90% of the outward current. Ca2+-sensitive single channels were recorded at asymetrical K+ gradients in cell-attached patch-clamp configurations (100.8+/-3.2 pS, n = 8). Open probability of the single channels recorded in inside-out patch-clamp configurations were greatly decreased by bath application of IBTN (100 nM) (Vh = -14.4+/-4.8 mV in control vs. 27.3+/-0.1 mV, n = 3, P < 0.05). These data suggest that large conductance Ca2+-activated K+ and delayed rectifier K+ channels contribute to the membrane potential, and thereby regulate the basal tone of opossum LES circular smooth muscle.  相似文献   

15.
Huang SC 《Regulatory peptides》2011,167(2-3):246-249
Atrial natriuretic peptide (ANP) causes relaxation in the opossum lower esophageal sphincter. The effects of dendroaspis natriuretic peptide (DNP) and other natriuretic peptides in the lower esophageal sphincter were not known. We measured the relaxation of transverse strips from the guinea pig lower esophageal sphincter caused by DNP, ANP, brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and a natriuretic peptide receptor-C agonist des[Gln(18), Ser(19), Gly(20), Leu(21), Gly(22)]ANP(4-23) amide (cANF(4-23)) in vitro. In resting strips of the guinea pig lower esophageal sphincter DNP and BNP caused marked relaxations. Furthermore, in both sarafotoxin S6c and carbachol-contracted lower esophageal sphincter strips, DNP caused marked and BNP caused moderate, concentration-dependent relaxations. ANP as well as CNP caused mild relaxations. In contrast, cANF(4-23) did not cause relaxation. The relative potencies for natriuretic peptides to cause relaxation were DNP>BNP>ANP>=CNP in both sarafotoxin S6c and carbachol-contracted lower esophageal sphincter strips. The DNP and BNP-induced relaxations were not affected by tetrodotoxin or atropine, suggesting that the natriuretic peptide-induced response was not neutrally mediated. In conclusion, these results demonstrate that natriuretic peptides cause the relaxation of the guinea pig lower esophageal sphincter. DNP is the most potent natriuretic peptide to cause lower esophageal sphincter relaxation, which might be mediated by natriuretic peptide receptor-A or a novel DNP-selective natriuretic peptide receptor.  相似文献   

16.
To characterize the neural pathways involved in lower esophageal sphincter relaxation, intraluminal pressures from the lower esophageal sphincter of the opossum were monitored during swallowing, vagal efferent nerve stimulation, and intraluminal balloon distention in the presence and absence of pharmacologic antagonism of putative neurotransmitters. The combination of atropine, hexamethonium, and 5-methoxydimethyltryptamine, which is known to block ganglionic transmission in the vagal inhibitory pathway to the lower esophageal sphincter, significantly antagonized LES relaxation induced by both swallowing and vagal stimulation, but did not affect the LES relaxation induced by balloon distention. Administration of the nitric oxide synthase inhibitor N omega nitro-L-arginine methyl ester, on the other hand, markedly inhibited LES relaxation induced by vagal stimulation, swallowing, and balloon distention, and this effect was reversed by administration of the nitric oxide synthase substrate L-arginine. These studies indicate that the distension-induced intramural pathway mediating LES relaxation does not involve ganglionic transmission similar to that of the vagal inhibitory pathway to the LES. However, the LES relaxation induced by all forms of stimuli appears to depend on nitric oxide as a final mediator.  相似文献   

17.
Previous studies of distensibility of the gastroesophageal junction (GEJ) in humans have not tried to distinguish between the effects of muscle action and passive elastic tissue properties of the GEJ. We studied 15 healthy subjects (ages 23-67 yr, 11 men/4 women) by using a catheter with a highly complaint bag positioned manometrically at the GEJ. The bag was distended with air at a rate of 20 ml/min while intrabag pressure was recorded. Distensions were performed during normal breathing, with breath held at maximum inspiration (MI) to activate the diaphragmatic crura, and with midesophageal balloon distension (BD) to relax the lower esophageal sphincter. In 10 subjects, distensions were performed after atropine injection (12 microg/kg iv). Pressure-volume curves and incremental distensibility values were calculated and compared among the different conditions. Both MI and BD significantly altered the slopes of the pressure-volume curves, whereas no effect was seen with atropine. Maximum distensibility was seen at the volume increment of 5-10 ml and was reduced with larger volumes. Distensibility measurements for the various test conditions tended to converge at the largest volume increment, suggesting that distensibility at this degree of distension was more related to the passive elastic properties of the GEJ. On the basis of these findings, we conclude that there can be significant active muscular contributions to recordings of distensibility at the GEJ, variations that must be controlled for during different study conditions.  相似文献   

18.
19.
This study aimed to use a novel high-resolution manometry (HRM) system to establish normative values for deglutitive upper esophageal sphincter (UES) relaxation. Seventy-five asymptomatic controls were studied. A solid-state HRM assembly with 36 circumferential sensors spaced 1 cm apart was positioned to record from the hypopharynx to the stomach. Subjects performed ten 5-ml water swallows and one each of 1-, 10-, and 20-ml volume swallows. Pressure profiles across the UES were analyzed using customized computational algorithms that measured 1) the relaxation interval (RI), 2) the median intrabolus pressure (mIBP) during the RI, and 3) the deglutitive sphincter resistance (DSR) defined as mIBP/RI. The automated analysis succeeded in confirming bolus volume modulation of both the RI and the mIBP with the mean RI ranging from 0.32 to 0.50 s and mIBP ranging from 5.93 to 13.80 mmHg for 1- and 20-ml swallows, respectively. DSR was relatively independent of bolus volume. Peak pharyngeal contraction during the return to the resting state postswallow was almost 300 mmHg, again independent of bolus volume. We performed a detailed analysis of deglutitive UES relaxation with a novel HRM system and customized software. The enhanced spatial resolution of HRM allows for the accurate, automated assessment of UES relaxation and intrabolus pressure characteristics, in both cases confirming the volume-dependent effects and absolute values of these parameters previously demonstrated by detailed analysis of concurrent manometry/fluoroscopy data. Normative values were established to aid in future clinical and investigative studies.  相似文献   

20.
Left ventricular (LV) longitudinal and transverse geometric changes during isovolumic contraction and relaxation are still controversial. This confusion is compounded by traditional definitions of these phases of the cardiac cycle. High-resolution sonomicrometry studies might clarify these issues. Crystals were implanted in six sheep at the LV apex, fibrous trigones, lateral and posterior mitral annulus, base of the aortic right coronary sinus, anterior and septal endocardial wall, papillary muscle tips, and edge of the anterior and posterior mitral leaflets. Changes in distances were time related to LV and aortic pressures and to mitral valve opening. At the beginning of isovolumic contraction, while the mitral valve was still open, the LV endocardial transverse diameter started to shorten while the endocardial longitudinal diameter increased. During isovolumic relaxation, while the mitral valve was closed, LV transverse diameter started to increase while the longitudinal diameter continued to decrease. These findings are inconsistent with the classic definitions of the phases of the cardiac cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号