首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic kidney disease (CKD) is associated with an increased risk of cardiovascular disease (CVD). (Pro)renin receptor (PRR) is activated in the kidney of CKD. The present study aimed to determine the role of indoxyl sulfate (IS), a uremic toxin, in PRR activation in rat aorta and human aortic smooth muscle cells (HASMCs). We examined the expression of PRR and renin/prorenin in rat aorta using immunohistochemistry. Both CKD rats and IS-administrated rats showed elevated expression of PRR and renin/prorenin in aorta compared with normal rats. IS upregulated the expression of PRR and prorenin in HASMCs. N-acetylcysteine, an antioxidant, and diphenyleneiodonium, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase, suppressed IS-induced expression of PRR and prorenin in HASMCs. Knock down of organic anion transporter 3 (OAT3), aryl hydrocarbon receptor (AhR) and nuclear factor-κB p65 (NF-κB p65) with small interfering RNAs inhibited IS-induced expression of PRR and prorenin in HASMCs. Knock down of PRR inhibited cell proliferation and tissue factor expression induced by not only prorenin but also IS in HASMCs.

Conclusion

IS stimulates aortic expression of PRR and renin/prorenin through OAT3-mediated uptake, production of reactive oxygen species, and activation of AhR and NF-κB p65 in vascular smooth muscle cells. IS-induced activation of PRR promotes cell proliferation and tissue factor expression in vascular smooth muscle cells.  相似文献   

2.
We previously demonstrated that indoxyl sulfate (IS), a uremic toxin, induces aortic calcification in hypertensive rats and induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. This study aimed to clarify whether IS stimulates senescence of cultured human aortic smooth muscle cells (HASMCs) and aorta in Dahl salt-sensitive hypertensive rats and whether AST-120, an oral sorbent, prevents senescence of aorta in subtotally nephrectomized uremic rats. IS increased the mRNA expression of p53 and p21 in HASMCs, whereas it did not change that of p16 and retinoblastoma protein (pRb). The IS-induced expression of p53 and p21 was suppressed by N-acetylcysteine, an antioxidant. IS promoted protein expression of p53, p21, and senescence-associated β-galactosidase (SA-β-gal) activity in HASMCs, and N-acetylcysteine and pifithrin-α,p-nitro, a p53 inhibitor, blocked these effects. IS upregulated prelamin A, a hallmark of vascular smooth muscle cell senescence, and downregulated FACE1/Zempste24 protein expression in HASMCs, and N-acetylcysteine suppressed these effects. Administration of IS to hypertensive rats increased expression of SA-β-gal, p53, p21, prelamin A, and oxidative stress markers such as 8-hydroxyl-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) in the cells embedded in the calcification area of arcuate aorta. Further, the uremic rat model showed positive staining for SA-β-gal, p53, p21, prelamin A, 8-OHdG, and MDA in the cells embedded in the calcification area of arcuate aorta, whereas AST-120 reduced the expression of these biomarkers. Taken together, IS accelerates vascular smooth muscle cell senescence with upregulation of p53, p21, and prelamin A and downregulation of FACE1 through oxidative stress.  相似文献   

3.
Lee CK  Park HJ  So HH  Kim HJ  Lee KS  Choi WS  Lee HM  Won KJ  Yoon TJ  Park TK  Kim B 《Proteomics》2006,6(24):6455-6475
We used 2-DE and MALDI-TOF/TOF to identify proteins of vascular smooth muscle cells whose expression was or was not altered by exposure to 500 microM H2O2 for 30 min. We detected more than 800 proteins on silver-stained gels of whole protein extracts from rat aortic smooth muscle strips. Of these proteins, 135 clearly unaffected and 19 having levels altered by exposure to H2O2 were identified. Protein characterization revealed that the most prominent vascular smooth muscle proteins were those with antioxidant, cytoskeletal structure, or muscle contraction. In addition, cofilin, an isoform of the actin depolymerizing factor family, shifted to its basic site on the 2-DE gel as a result of H2O2 treatment. In Western blot analysis of proteins from A7r5 aortic smooth muscle cells, the phosphorylation, but not the expression, of cofilin was decreased by H2O2 in a dose-dependent manner. The H2O2-induced dephosphorylation of cofilin and apoptosis was inhibited by Na3VO4, an inhibitor of protein tyrosine phosphatase (PTP). These results suggest that cofilin is one of the proteins regulated by H2O2 treatment in vascular smooth muscle, and has an important role in the induction of vascular apoptosis through PTP-dependent mechanisms.  相似文献   

4.
Metabolism has been reported to associate with the progression of vascular diseases. However, how vascular calcification in chronic kidney disease (CKD) is regulated by metabolic status remains poorly understood. Using a model of 5/6 nephrectomy, we demonstrated that the aortic tissues of CKD mice had a preference for using oxidative phosphorylation (OXPHOS). Both high phosphate and human uremic serum-stimulated vascular smooth muscle cells (VSMCs) had enhanced mitochondrial respiration capacity, while the glycolysis level was not significantly different. Besides, 2-deoxy-d-glucose (2-DG) exacerbated vascular calcification by upregulating OXPHOS. The activity of cytochrome c oxidase (COX) was higher in the aortic tissue of CKD mice than those of sham-operated mice. Moreover, the expression levels of COX15 were higher in CKD patients with aortic arch calcification (AAC) than those without AAC, and the AAC scores were correlated with the expression level of COX15. Suppressing COX sufficiently attenuated vascular calcification. Our findings verify the relationship between OXPHOS and calcification, and may provide potential therapeutic approaches for vascular calcification in CKD.Subject terms: Calcification, End-stage renal disease  相似文献   

5.
Previous work shows that osteopontin has a role during matrix reorganization after tissue injury including vascular conditions such as atherosclerosis and restenosis following angioplasty. In vitro, osteopontin promotes activities such as adhesion and migration but the mechanisms that regulate the expression of this matrix protein remain essentially unknown. This study examined if the ERK signaling pathway is involved in injury-induced osteopontin expression in cultured rat aortic smooth muscle cells. Northern and Western blotting demonstrated a marked activation of osteopontin expression in response to injury. Treating the cells with PD98059, a specific MEK1 inhibitor, prior to injury, blocked this upregulation. MEK1 phosphorylates ERK1/ERK2, which belong to the family of mitogen-activated protein kinases. We conclude that ERK1/ERK2 are involved in the regulation of osteopontin expression in cultured vascular smooth muscle cells.  相似文献   

6.
Phosphorylation of BCL-2 family member BAD at different residues triggers different physiological effects, either inhibiting or promoting apoptosis. The recently identified phosphorylation site at Ser-128 enhances the apoptotic activity of BAD. We here show that BAD becomes phosphorylated at Ser-128 in the mitotic phase of the cell cycle in NIH3T3 cells. We also show that BAD-S128 is phosphorylated in taxol-treated mouse fibroblasts and MDA-MB-231 human breast cancer cells. However, expression of a phosphorylation-defective dominant negative BAD mutant did not block taxol-induced apoptosis. These data support the view that the phosphorylation of BAD Serine 128 exerts cell-specific effects on apoptosis. Whereas the BAD Serine 128 phosphorylation induces apoptosis in neuronal cells, it does not appear to promote apoptosis in proliferating non-neural cells during mitosis or upon exposure to the antineoplastic agent taxol.  相似文献   

7.
8.
In vascular smooth muscle cells, Jak2 tyrosine kinase becomes activated in response to oxidative stress in the form of hydrogen peroxide. Although it has been postulated that hydrogen peroxide-induced Jak2 activation promotes cell survival, this has never been tested. We therefore examined the role that Jak2 plays in vascular smooth muscle cell apoptosis following hydrogen peroxide treatment. Here, we report that Jak2 tyrosine kinase activation by hydrogen peroxide is required for apoptosis of vascular smooth muscle cells. Upon treatment of primary rat aortic smooth muscle cells with hydrogen peroxide, we observed laddering of genomic DNA and nuclear condensation, both hallmarks of apoptotic cells. However, apoptosis was prevented by either the expression of a dominant negative Jak2 protein or by the Jak2 pharmacological inhibitor AG490. Moreover, expression of the proapoptotic Bax protein was induced following hydrogen peroxide treatment. Again, expression of a dominant negative Jak2 protein or treatment of cells with AG490 prevented this Bax induction. Following Bax induction by hydrogen peroxide, mitochondrial membrane integrity was compromised, and caspase-9 became activated. In contrast, in cells expressing a Jak2 dominant negative we observed that mitochondrial membrane integrity was preserved, and no caspase-9 activation occurred. These data demonstrate that the activation of Jak2 tyrosine kinase by hydrogen peroxide is essential for apoptosis of vascular smooth muscle cells. Furthermore, this report identifies Jak2 as a potential therapeutic target in vascular diseases in which vascular smooth muscle cell apoptosis contributes to pathological progression.  相似文献   

9.
Apoptosis of smooth muscle cells is a common feature of vascular lesions but its pathophysiological significance is not known. We demonstrate that signals initiated by regulated Fas-associated death domain protein overexpression in rat vascular smooth muscle cells in the carotid artery induce expression of monocyte-chemoattractant protein-1 and interleukin-8, and cause massive immigration of macrophages in vivo. These chemokines, and a specific set of other pro-inflammatory genes, are also upregulated in human vascular smooth muscle cells during Fas-induced apoptosis, in part through a process that requires interleukin-1alpha activation. Induction of a pro-inflammatory program by apoptotic vascular smooth muscle cells may thus contribute to the pathogenesis of vascular disease.  相似文献   

10.
Transforming growth factor beta (TGF-beta) induces apoptosis in a variety of cells. We have previously shown that TGF-beta 1 rapidly induces apoptosis in the FaO rat hepatoma cell line. We have now studied the effect of TGF-beta 1 on the expression of different members of the Bcl-2 family in these cells. We observed no detectable changes in the steady-state levels of Bcl-2, Bcl-X(L), and Bax. However, TGF-beta 1 induced caspase-dependent cleavage of BAD at its N terminus to generate a 15-kDa truncated protein. Overexpression of the 15-kDa truncated BAD protein enhanced TGF-beta 1-induced apoptosis, whereas a mutant BAD resistant to caspase 3 cleavage blocked TGF-beta 1-induced apoptosis. Overexpression of Smad3 dramatically enhanced TGF-beta 1-induced cleavage of BAD and apoptosis, whereas antisense Smad3 blocked TGF-beta 1-induced apoptosis and BAD cleavage. These results suggest that TGF-beta 1 induces apoptosis through the cleavage of BAD in a Smad3-dependent mechanism.  相似文献   

11.
Chronic kidney disease (CKD) is associated with vascular calcifications and atherosclerosis. There is a need for novel predictors to allow earlier diagnosis of these disorders, predict disease progression, and improve assessment of treatment response. We focused on microRNAs since they are implicated in a variety of cellular functions in cardiovascular pathology. We examined changes of microRNA expression in aortas of CKD and non-CKD wild type mice and apolipoprotein E knock-out mice, respectively. Both vascular smooth muscle-specific miR-143 and miR-145 expressions were decreased in states of atherosclerosis and/or CKD or both, and the expression level of protein target Myocardin was increased. The inflammatory miR-223 was increased in more advanced stages of CKD, and specific protein targets NFI-A and GLUT-4 were dramatically decreased. Expression of miR-126 was markedly increased and expression of protein targets VCAM-1 and SDF-1 was altered during the course of CKD. The drug sevelamer, commonly used in CKD, corrected partially these changes in microRNA expression, suggesting a direct link between the observed microRNA alterations and uremic vascular toxicity. Finally, miR-126, -143 and -223 expression levels were deregulated in murine serum during the course of experimental CKD. In conclusion, these miRNAs could have role(s) in CKD vascular remodeling and may therefore represent useful targets to prevent or treat complications of CKD.  相似文献   

12.
13.
研究脐动脉来源的平滑肌细胞在体外培养时是否会自发成骨细胞分化,以深入了解该细胞的生物学特点.采用MTT法研究了脐动脉平滑肌细胞的生长曲线:用形态学方法观察了脐动脉平滑肌细胞自发细胞结节的形成过程;用Hoechst 33258染色法及TUNEL染色法研究了细胞结节中的凋亡现象;采用免疫组化染色法研究了细胞结节中碱性磷酸酶的表达.采用茜素红S染色及透射电镜研究了脐动脉平滑肌细胞的自发钙化.研究发现,体外培养的脐动脉平滑肌细胞传代后约7天细胞即可汇合,汇合后的细胞表现为典型的"峰、谷"样生长状态,随着培养时间的延长.在"峰"形生长区域,细胞聚集生长,自发形成细胞结节,经4-5周培养,细胞结节不断增大并钙化,免疫组化发现结节中有大量碱性磷酸酶表达.同时,在结节形成过程中伴随有大量平滑肌细胞凋亡.我们的研究表明,体外培养的脐动脉来源的平滑肌细胞同主动脉来源的平滑肌细胞一样可以自发成骨细胞分化.而平滑肌细胞凋亡可能参与了该过程.  相似文献   

14.
BAD, a pro-apoptotic protein of the Bcl-2 family, has recently been identified as an integrator of several anti-apoptotic signaling pathways in prostate cancer cells. Thus, activation of EGFR, GPCRs or PI3K pathway leads to BAD phosphorylation and inhibition of apoptosis. Increased levels of BAD in prostate carcinomas have also been reported. It appears contradictory that instead of limiting expression of pro-apoptotic protein, prostate cancer cells choose to increase BAD levels while keeping it under tight phosphorylation control. Analysis of the effect of BAD on prostate cancer xenografts has shown that increased BAD expression enhances tumor growth, while knockdown of BAD expression by shRNA inhibits tumor growth. Tissue culture experiments demonstrated that increased BAD expression stimulates proliferation of prostate cancer cells. These results suggest that increased expression of BAD provides a proliferative advantage to prostate tumors, while BAD dephosphorylation increases sensitivity of prostate cancer cells to apoptosis. Combination of proliferative and apoptotic properties prompts prostate cancer cells to be “addicted” to increased levels of phosphorylated BAD. Thus, kinases that phosphorylate BAD are plausible therapeutic targets; while monitoring BAD phosphorylation could be used to predict tumor response to treatments.  相似文献   

15.
Cells of the vasculature, including macrophages, smooth muscle cells, and endothelial cells, exhibit apoptosis in culture upon treatment with oxidized low density lipoprotein, as do vascular cells of atherosclerotic plaque. Several lines of evidence support the hypothesis that the apoptotic component of oxidized low density lipoprotein is one or more oxysterols, which have been shown to induce apoptosis through the mitochondrial pathway. Activation of the mitochondrial pathway of apoptosis is regulated by members of the BCL family of proteins. In this study, we demonstrate that, in the murine macrophage-like cell line P388D1, oxysterols (25-hydroxycholesterol and 7-ketocholesterol) induced the degradation of the prosurvival protein kinase AKT (protein kinase B). This led, in turn, to the activation of the BCL-2 homology-3 domain-only proteins BIM and BAD and down-regulation of the anti-apoptotic multi-BCL homology domain protein BCL-xL. These responses would be expected to activate the pro-apoptotic multi-BCL homology domain proteins BAX and BAK, leading to the previously reported release of cytochrome c observed during oxysterol-induced apoptosis. Somewhat surprisingly, small interfering RNA knockdown of BAX resulted in a complete block of the induction of apoptosis by 25-hydroxycholesterol.  相似文献   

16.
氧化型低密度脂蛋白诱导血管平滑肌细胞凋亡的机理研究   总被引:2,自引:0,他引:2  
近年来的研究发现,氧化型低密度脂蛋白(oxi-dizedlowdensitylipoprotein,OX-LDL)是导致动脉粥样硬化发生的重要因素[1].OX-LDL具有双重效应,既有强烈的促细胞生长效应,又可诱导细胞发生凋亡.这主要根据过氧化物量的变化而定,少量的OX-LDL可促进增殖,而长时间大量的OX-LDL作用于平滑肌细胞则可导致其凋亡[2].OX-LDL诱导的平滑肌细胞凋亡有助于氧化脂质的生成,导致动脉粥样硬化形成.在动脉粥样硬化晚期,由于斑块中的平滑肌细胞凋亡,细胞外基质分泌减少,使斑块极不稳定而易于破裂,诱发急性临床事件如心肌梗塞、猝死等的发生[3].OX-…  相似文献   

17.
BAX and BAD are members of the BCL-2 family of proteins. The over-expression of BAX protein has been shown to accelerate apoptosis and increasedbax mRNA levels have also been shown to be associated with the initiation of apoptosis. BAD has also been shown to accelerate apoptosis. In this paper we describe the localization of BAD and BAX expression throughout the gastrointestinal tract of the mouse and the effect that BCL-2 has on the expression of these two proteins. We have discussed the distribution of BAX and BAD in relation to the differences between the small and large bowel in (i) the susceptibility of stem cells to apoptosis and (ii) tumour incidence.This work was supported by the Cancer Research Campaign.  相似文献   

18.
The BH3-only proapoptotic protein, BAD, was cloned from zebrafish embryos and its properties were characterized. Zebrafish BAD (zBAD) is a protein with 147 amino acids that contains a BH3 domain and a putative 14-3-3 binding site with the sequence of RPRSRS(84)AP, corresponding to S(136) in mouse BAD (mBAD). zBAD shares 34%, 28%, and 29% amino acid sequence identity to the human, mouse, and rat BAD, respectively. RT-PCR analysis revealed that the expression of zBAD gene is found in various parts of zebrafish tissues. The treatment with the z-VAD fmk, a broad-range caspase inhibitor, in COS-1 cells significantly increased the expression of zebrafish BAD fusion proteins (GFP-zBAD and HA-zBAD), indicating that zebrafish BAD fusion proteins may be cleaved by caspase(s). zBAD was shown to induce apoptosis when it was overexpressed in COS-1 cells. In addition, zBAD was also expressed in muscle cells under the muscle-specific promoter from zebrafish alpha-actin gene. Abnormality in the skeletal muscles and the loss of green fluorescence signal in the same region were observed. Taken together, our results indicate that zBAD could induce apoptosis in vitro and in vivo and may have biological implications in apoptosis during zebrafish development.  相似文献   

19.
We have used a subtractive method to clone novel messages enriched in the heart. Here we show that one such message, bves (blood vessel/epicardial substance) is a novel protein that is highly conserved between chicken and mouse. The bves message is detected at high levels in early chick hearts. Using anti-Bves antibodies, we show expression in cells of the proepicardial organ, migrating epicardium, epicardial-derived mesenchyme, and smooth muscle of the developing intracardiac arterial system, including the coronary arteries. Our data suggest that Bves is an early marker of developing vascular smooth muscle cells. In addition, the expression pattern of Bves protein reveals the patterning of intracardiac vascular smooth muscle and possible insights into the cellular regulation of smooth muscle differentiation during vasculogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号