首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Hyperglycemia-induced oxidative stress may play a key role in the pathogenesis of diabetic vascular disease. The purpose of this study was to determine the effects of glucose on levels of glutathione (a major intracellular antioxidant), the expression of gamma-glutamylcysteine synthetase (the rate-limiting enzyme in glutathione de novo synthesis), and DNA damage in human vascular smooth muscle cells in vitro. High glucose conditions and buthionine sulphoximine, an inhibitor of gamma-glutamylcysteine synthetase, reduced intracellular glutathione levels in vascular smooth muscle cells. This reduction was accompanied by a decrease in the mRNA expression of both subunits of gamma-glutamylcysteine synthetase as well as an increase in DNA damage. In high glucose conditions, incubation of the vascular smooth muscle cells with alpha-lipoic acid and L-cystine restored glutathione levels. We suggest that the decrease in GSH levels seen in high glucose conditions is mediated by the availability of cysteine (rate-limiting substrate in de novo glutathione synthesis) and the gene expression of the gamma-glutamylcysteine synthetase enzyme. Glutathione depletion is associated with an increase in DNA damage, which can be reduced when glutathione levels are restored.  相似文献   

3.
4.
Phosphorylation of BAD, a pro-apoptotic member of the Bcl-2 protein family, on either Ser112 or Ser136 is thought to be necessary and sufficient for growth factors to promote cell survival. Here we report that Ser155, a site phosphorylated by protein kinase A (PKA), also contributes to cell survival. Ser112 is thought to be the critical PKA target, but we found that BAD fusion proteins containing Ala at Ser112 (S112A) or Ser136 (S136A) or at both positions (S112/136A) were still heavily phosphorylated by PKA in an in vitro kinase assay. BAD became insensitive to phosphorylation by PKA only when both Ser112 and Ser136, or all three serines (S112/136/155) were mutated to alanine. In HEK293 cells, BAD fusion proteins mutated at Ser155 were refractory to phosphorylation induced by elevation of cyclic AMP(cAMP) levels. Phosphorylation of the S112/136A mutant was >90% inhibited by H89, a PKA inhibitor. The S155A mutant induced more apoptosis than the wild-type protein in serum-maintained CHO-K1 cells, and apoptosis induced by the S112/136A mutant was potentiated by serum withdrawal. These data suggest that Ser155 is a major site of phosphorylation by PKA and serum-induced kinases. Like Ser112 and Ser136, phosphorylation of Ser155 contributes to the cancellation of the pro-apoptotic function of BAD.  相似文献   

5.
6.
7.
In the growth arrested cultures of bovine carotid smooth muscle, K252a (10 - 100 ng/ml), a protein kinase inhibitor with wide spectrum suppressed the cell proliferation induced by TPA and increase of serum. K252a was more potent in the antiproliferative activity than H7, a C-kinase-specific inhibitor, but less than staurosporine, another wide-spectrum protein kinase inhibitor. Since C-kinase plays an important role in the signal transduction leading to the cell proliferation and K252a inhibits C-kinase in vitro, the antiproliferative effect of K252a to carotid smooth muscle cells is likely to be exerted through c-kinase dependent pathway.  相似文献   

8.
9.
10.
11.
Vanadate has been considered in the treatment of diabetes because of its insulin-like effects. However, it has severe toxic effects in both animal and man. In cultured cells, vanadate can either cause death or be growth stimulatory, depending on the cell type and growth conditions. Here, we report that in baboon aortic smooth muscle cells (SMCs), vanadate induced p42/p44 mitogen-activated protein kinase (MAPK) activity. This effect was abolished in the presence of the specific MAPK kinase (MAPKK) inhibitor PD098059. Although activation of p42/p44MAPK/MAPKK is generally thought to be necessary for proliferation, in SMCs, vanadate did not promote DNA synthesis and inhibited thymidine incorporation stimulated by platelet-derived growth factor (PDGF)-BB in a dose dependent fashion (IC50: 30 M). Prolonged exposure to vanadate exerted cytotoxic effects. Cells retracted, rounded up and detached from the substratum. These vanadate-induced morphological changes were blocked in the presence of PD098059. The addition of PDGF-BB further activated p42/p44MAPK/MAPKK in the presence of vanadate and substantially increased vanadate toxicity. We conclude from these observations that activation of the p42/p44MAPK/MAPKK signalling module contributes to the cytotoxic effects induced by vanadate.  相似文献   

12.
13.
The underlying mechanism of neointima formation remains unclear. Ubiquitin-specific peptidase 10 (USP10) is a deubiquitinase that plays a major role in cancer development and progression. However, the function of USP10 in arterial restenosis is unknown. Herein, USP10 expression was detected in mouse arteries and increased after carotid ligation. The inhibition of USP10 exhibited thinner neointima in the model of mouse carotid ligation. In vitro data showed that USP10 deficiency reduced proliferation and migration of rat thoracic aorta smooth muscle cells (A7r5) and human aortic smooth muscle cells (HASMCs). Mechanically, USP10 can bind to Skp2 and stabilize its protein level by removing polyubiquitin on Skp2 in the cytoplasm. The overexpression of Skp2 abrogated cell cycle arrest induced by USP10 inhibition. Overall, the current study demonstrated that USP10 is involved in vascular remodeling by directly promoting VSMC proliferation and migration via stabilization of Skp2 protein expression.  相似文献   

14.
The p21 (cip1/waf1) protein induces cell cycle arrest through inhibition of the activity of cdk (cyclin dependent kinase)/cyclin complexes. Expression of p21 is induced in a p53-dependent manner by DNA damage. p21 can also be induced independently of p53 by phorbol ester or okadaic acid. In this study, we have addressed the role of the PKC (protein kinase C) signaling pathway in the induction of p21 in response to PMA (phorbol myristate acetate) and okadaic acid. Levels of p21 (protein and mRNA) rapidly increased (within approximately 4 h) in U937 cells treated with PMA. The PKC-specific inhibitors RO 31-8220 and GF109203X down-regulated PMA or okadaic acid-induced p21 expression. Following persistent PKC activation, p21 mRNA levels remained elevated, indicating an enhanced stability of the mRNA. Using actinomycin D to measure mRNA stability and p21 promoter luciferase assays to measure activity, we provide evidence to support a role for the PKC signaling pathway in p21 mRNA stability. Thus, PKC regulates the amount of p21 in U937 cells at the level of mRNA accumulation and translation.  相似文献   

15.
16.
The accumulation of radiolabeled arachidonicacid (AA), immunoblot analysis of subcellular fractions, andimmunofluorescence tagging of proteins in intact cells were used toexamine the coupling of ANG II receptors with the activity and locationof a cytosolic phospholipase A2(cPLA2) in vascular smoothmuscle cells (VSMC). ANG II induced the accumulation of AA, whichpeaked by 10 min and was downregulated by 20 min. A large proportion ofthe AA released in response to ANG II was due to the activation of a Ca2+-dependent lipase coupled toan AT1 receptor. However,regulation of Ca2+ availabilityfailed to completely block AA release, and a small but significantreduction in ANG II-mediated AA release was observed in the presence ofan AT2 antagonist. These findings,coupled with a 25% reduction in the ANG II-induced AA release by aninhibitor specific for aCa2+-independentPLA2, are consistent with thepresence and activation of aCa2+-independentPLA2. In contrast, immunoblotanalysis and immunofluorescence detection showed that the ANGII-mediated translocation of cPLA2 to a membrane fraction was exclusivelyAT1 dependent and regulated byCa2+ availability. Furthermore,the nucleus was the membrane target. We conclude that ANG II regulatesthe Ca2+-dependent activation andtranslocation of cPLA2 through anAT1 receptor and that this eventis targeted at the nucleus in VSMC.

  相似文献   

17.
Norepinephrine stimulates release of arachidonic acid from tissue lipids. Arachidonic acid metabolites generated through the lipoxygenase and cytochrome P-450 pathways but not cyclooxygenase stimulate mitogen activated protein (MAP) kinase activity and proliferation of vascular smooth muscle cells (VSMC). Moreover, norepinephrine has been shown to activate the Ras/MAP kinase pathway through generation of cytochrome P450 metabolite of arachidonic acid, 20-hydroxyeicosatetraenoic acid (20-HETE). The purpose of this study was to investigate the contribution of Ras in norepinephrine-induced mitogenesis in aortic VSMC. Farnesylation of Ras by farnesyl transferase is required for its full activation. Norepinephrine-induced DNA synthesis, as measured by [3H]-thymidine incorporation, was attenuated by inhibitors of Ras farnesyl transferase FPT III and BMS-191563. These agents also inhibited 20-HETE-stimulated [3H]-thymidine incorporation. In cells transiently transfected with dominant negative Ras (RasN17), norepinephrine, and 20-HETE-induced proliferation of VSMC was attenuated. Both norepinephrine and 20-HETE increased localization of Ras to plasma membrane and MAP kinase activity; FPT III attenuated these effects. These data suggest that VSMC proliferation induced by norepinephrine and 20-HETE is mediated by Ras/MAP kinase pathway.  相似文献   

18.
Kanda Y  Nishio E  Kuroki Y  Mizuno K  Watanabe Y 《Life sciences》2001,68(17):1989-2000
Thrombin is a potent mitogen for vascular smooth muscle cells. However, the signaling pathways by which thrombin mediates its mitogenic response are not fully understood. The ERK (extracellular signal-regulated protein kinase) and JNK (c-Jun N-terminal kinase) members of the mitogen-activated protein kinase (MAPK) family are reported to be activated by thrombin. We have investigated the response to thrombin of another member of the MAPK family, p38 MAPK, which has been suggested to be activated by both stress and inflammatory stimuli in vascular smooth muscle cells. We found that thrombin induced time- and dose-dependent activation of p38 MAPK. Maximal stimulation of p38 MAPK was observed after a 10-min incubation with 1 unit ml(-1) thrombin. GF109203X, a protein kinase C inhibitor, and prolonged treatment with phorbol 12-myristate 13-acetate partially inhibited p38 MAPK activation. A tyrosine kinase inhibitor, genistein, also inhibited p38 MAPK activation in a dose-dependent manner. p38 MAPK activation was inhibited by overexpression of betaARK1ct (beta-adrenergic receptor kinase I C-terminal peptide). p38 MAPK activation was also inhibited by expression of dominant-negative Ras, not by dominant-negative Rac. We next examined the effect of a p38 MAPK inhibitor, SB203580, on thrombin-induced proliferation. SB203580 inhibited thrombin-induced DNA synthesis in a dose-dependent manner. These results suggest that thrombin activates p38 MAPK in a manner dependent on Gbetagamma, protein kinase C, a tyrosine kinase, and Ras, that p38 MAPK has a role in thrombin-induced mitogenic response in the cells.  相似文献   

19.
Recent studies have shown that CD36 plays important roles as a major scavenger receptor for oxidized low-density lipoproteins and as a crucial transporter for long-chain fatty acids. CD36 deficiency might be associated with insulin resistance and abnormal dynamics of long-chain fatty acids. Endothelin-1 (ET-1), which is synthesized and secreted by vascular endothelial cells, is the most potent endogenous vasoconstrictor known and also stimulates the proliferation of vascular smooth muscle cells (VSMCs) and thus is believed to play an important role in the development of various circulatory disorders, including hypertension and atherosclerosis. The aim of the present study was to investigate the regulatory effect of ET-1 on CD36 expression in cultured VSMCs. VSMCs were treated for different times (0-24 h) with a fixed concentration (100 nM) of ET-1 or with different concentrations (0-100 nM) for a fixed time (24 h); then CD36 expression was determined using Western blots. CD36 expression was significantly decreased by ET in a time- and dose-dependent manner. This inhibitory effect was prevented by the ET(A) receptor antagonist BQ-610 (10 microM) but not the ET(B) receptor antagonist BQ-788 (10 microM). To further explore the underlying mechanisms of ET-1 action, we examined the involvement of the tyrosine kinase-mediated and MAPK-mediated pathways. The inhibitory effect of ET-1 on CD36 protein expression was blocked by inhibition of tyrosine kinase activation by use of genistein (100 microM) and by the ERK inhibitor PD-98059 (75 microM) but not by the p38 MAPK inhibitor SB-203580 (20 microM). In conclusion, we have demonstrated that ET-1, acting via the ET(A) receptor, suppresses CD36 protein expression in VSMCs by activation of the tyrosine kinase and ERK pathways.  相似文献   

20.
The effects of prolactin (PRL) on A10 (aortic smooth muscle) cell proliferation were examined by measuring both [3H]thymidine incorporation and increases in cell number. PRL induced a significant proliferative response from 10(-11) to 10(-7) M, with optimal activity at 10(-10) M. PRL also enhanced platelet-derived growth factor (PDGF)-induced proliferation. The possibility that PRL induces proliferation through a protein kinase C (PKC)-mediated mechanism was also examined. PRL caused activation of PKC from 10(-12) to 10(-8) M. Antiserum to PRL, a monoclonal antibody directed against the PRL receptor and the immunosuppressive agent cyclosporine A, were able to inhibit PRL-induced proliferation and activation of PKC. The PKC inhibitors, staurosporine, sphingosine, and 1-(-5-iso-quinoline-sulfonyl)-2-methylpiperazine (H-7) also antagonized both proliferation and PKC activation. These data strongly suggest that PRL-induced A10 cell proliferation is mediated through the PKC pathway and that this may play a role in vascular smooth muscle cell hyperplasia, characteristic of the pathogenesis of cardiovascular diseases such as hypertension and atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号