首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow cytometry (FCM) allows the simultaneous measurement of multiple fluorescences and light scatter induced by illumination of single cells or microscopic particles in suspension, as they flow rapidly through a sensing area. In some systems, individual cells or particles may be sorted according to the properties exhibited. By using appropriate fluorescent markers, FCM is unique in that multiple structural and functional parameters can be quantified simultaneously on a single-particle basis, whereas up to thousands of biological particles per second may be examined. FCM is increasingly used for basic, clinical, biotechnological, and environmental studies of biochemical relevance. In this critical review, we summarize the main advantages and limitations of FCM for biochemical studies and discuss briefly the most relevant parameters and analytical strategies. Graphical examples of the biological information provided by multiparametric FCM are presented. Also, this review contains specific sections on flow cytoenzymology, FCM analysis of isolated subcellular organelles, and cell-free FCM.  相似文献   

2.
Multiple wavelength operation in a flow cytometer is an exciting way for cell analysis based on both fluorescence and optical scattering processing. For example, this multiparametric technique is currently used to differentiate blood cells subpopulations. The choice of excitation wavelengths matching fluorochrome spectra (it is currently the opposite) and the use of a broader range of fluorochromes can be made by taking advantage of a filtered supercontinuum white light source. In this study, we first wished to validate the use of a specific triggered supercontinuum laser in a flow cytometer based on white light scattering and electric sizing on human blood cells. Subsequently, to show the various advantages of this attractive system, using scattering effect, electrical detections, and fluorescence analysis, we realized cells sorting based on DNA/RNA stained by thiazole orange. Discrimination of white blood cells is efficiently demonstrated by using a triggered supercontinuum-based flow cytometer operating in a "one cell-one shot" configuration. The discriminated leukocyte populations are monocytes, lymphocytes, granulocytes, immature granulocytes, and cells having a high RNA content (monoblasts, lymphoblasts, and plasma cells). To the best of our knowledge, these results constitute the first practical demonstration of flow cytometry based on triggered supercontinuum illumination. This study is the starting point of a series of new experiments fully exploiting the spectral features of such a laser source. For example, the large flexibility in the choice of the excitation wavelength allows to use a larger number of fluorochromes and to excite them more efficiently. Moreover, this work opens up new research directions in the biophotonics field, such as the combination of coherent Raman spectroscopy and flow cytometry techniques.  相似文献   

3.
BACKGROUND: The ImageStream system combines advances in CCD technologies with a novel optical architecture for high sensitivity and multispectral imaging of cells in flow. The sensitivity and dynamic range as well as a methodology for spectral compensation of imagery is presented. METHODS: Multicolored fluorescent beads were run on the ImageStream and a flow cytometer. Four single color fluorescent control samples of cells were run to quantify spectral overlap. An additional sample, labeled with all colors was run and compensated in six spectral channels. RESULTS: Analysis of empirical data for sensitivity and dynamic range matched theoretical predictions. The ImageStream system demonstrated fluorescence sensitivity comparable to a PMT-based flow cytometer. A methodology for addressing spectral overlap, individual pixel anomalies, and multiple imaging modalities was demonstrated for spectral compensation of K562 cells. Imagery is shown pre- and post-compensation. CONCLUSIONS: Unlike intensity measurements made with conventional flow cytometers, object size impacts both dynamic range and fluorescence sensitivity in systems that utilize pixilated detection. Simultaneous imaging of alternate modalities can be employed to increase fluorescent sensitivity. Effective compensation of complex multimode imagery spanning six spectral bands is accomplished in a semi-automated manner.  相似文献   

4.
When antigen density on the surface of a cell population is low and variable, the percentage of that population determined to express the antigen (i.e., to be positively stained) depends directly on the sensitivity of the flow cytometer for resolving particles which are dimly fluorescent from those which are unstained. In this study, the sensitivity of a commercial flow cytometer has been improved by changes in the photomultiplier tube, the fluorescence filter, and the amount of stray light entering the fluorescence channel. In a model system with human lymphocytes, modifications to these factors increased the percent of the B-lymphocyte population found to express the CD5 antigen.  相似文献   

5.
BACKGROUND: Scanning fluorescence microscope (SFM) is a new technique for automated motorized microscopes to measure multiple fluorochrome labeled cells (Bocsi et al., Cytometry A 2004, 61:1-8). AIMS: We developed a four-color staining protocol (DNA, CD3, CD4, and CD8) for the lymphocyte phenotyping by SFM. METHODS: Organic (Alexa488, FITC, PE-Alexa610, CyChrom, APC) and inorganic (quantum dot (QD) 605 or 655) fluorochromes were used and compared in different combinations. Measurements were performed in suspension by flow cytometer (FCM) and on slide by SFM. RESULTS: Both QDs were detectable by the appropriate Axioplan-2 and FCM filters and the AxioCam BW-camera. CD4/CD8 ratios were highly correlated (P = 0.01) between the SFM and FCM. CONCLUSION: Automated SFM is an applicable tool for CD4/CD8 ratio determination in peripheral blood samples with QDs.  相似文献   

6.
目的:基于细胞计数板建立一种简单、快速使用免疫荧光显微镜观察B淋巴细胞吞噬卡介苗(BCG)现象的新方法,对即将进行流式细胞检测的样品进行质控,提高流式细胞术检测吞噬率的稳定性,同时为流式细胞仪检测吞噬率提供镜下依据。方法:B细胞与FITC标记的BCG共培养24 h后,PE anti-human CD19抗体直接标记细胞膜,应用细胞计数板在荧光显微镜下观察B细胞吞噬现象,流式细胞仪检测吞噬率。结果:应用细胞计数板在荧光镜下可观察到B细胞与BCG的荧光标记及B细胞与BCG共标记现象,证实B细胞可吞噬BCG,流式细胞仪检测结果显示吞噬率为13.9%。结论:应用细胞计数板在荧光镜下可观察B细胞吞噬现象,且操作简便快速,能对流式细胞检测的样品进行质控,并提供镜下依据。  相似文献   

7.
Fluorescence is a mainstay of bioanalytical methods, offering sensitive and quantitative reporting, often in multiplexed or multiparameter assays. Perhaps the best example of the latter is flow cytometry, where instruments equipped with multiple lasers and detectors allow measurement of 15 or more different fluorophores simultaneously, but increases beyond this number are limited by the relatively broad emission spectra. Surface enhanced Raman scattering (SERS) from metal nanoparticles can produce signal intensities that rival fluorescence, but with narrower spectral features that allow a greater degree of multiplexing. We are developing nanoparticle SERS tags as well as Raman flow cytometers for multiparameter single cell analysis of suspension or adherent cells. SERS tags are based on plasmonically active nanoparticles (gold nanorods) whose plasmon resonance can be tuned to give optimal SERS signals at a desired excitation wavelength. Raman resonant compounds are adsorbed on the nanoparticles to confer a unique spectral fingerprint on each SERS tag, which are then encapsulated in a polymer coating for conjugation to antibodies or other targeting molecules. Raman flow cytometry employs a high resolution spectral flow cytometer capable of measuring the complete SERS spectra, as well as conventional flow cytometry measurements, from thousands of individual cells per minute. Automated spectral unmixing algorithms extract the contributions of each SERS tag from each cell to generate high content, multiparameter single cell population data. SERS-based cytometry is a powerful complement to conventional fluorescence-based cytometry. The narrow spectral features of the SERS signal enables more distinct probes to be measured in a smaller region of the optical spectrum with a single laser and detector, allowing for higher levels of multiplexing and multiparameter analysis.  相似文献   

8.
BACKGROUND: The study of the molecular-genetic basis of heterogeneity of HLA class I expression in solid tumors is hampered by the lack of reliable rapid cell-by-cell isolation techniques. Hence, we studied the applicability of a flow cytometric approach (Corver et al.: Cytometry 2000;39;96-107). METHODS: Cells were isolated from five fresh cervical tumors and simultaneously stained for CD45 or vimentin (fluorescein isothiocyanate fluorescence), Keratin (R-phycoerythrin fluorescence), HLA class I (APC fluorescence), and DNA (propidium iodide fluorescence). A dual-laser flow cytometer was used for fluorescence analysis. Tissue sections from the corresponding tumors were stained for HLA class I antigens, keratin, vimentin, or CD45. RESULTS: Flow cytometry enabled the simultaneous measurement of normal stromal cells (vimentin positive), inflammatory cells (CD45 positive), epithelial cells (keratin positive), and DNA content readily. Normal stromal/inflammatory cells served as intrinsic HLA class I-positive as well as DNA-diploid references. Good DNA histogram quality was obtained (average coefficient of variation < 4%). Intratumor keratin positive subpopulations differing in HLA class I expression as well as DNA content could be clearly identified. Losses of allele-specific HLA class I expression found by immunohistochemistry were also detected by flow cytometry. CONCLUSIONS: We conclude that multiparameter DNA flow cytometry is a powerful tool to study loss of HLA class I expression in human cervical tumors. The method enables flow-sorting of discrete tumor and normal cell subpopulations for further molecular genetic analysis.  相似文献   

9.
流式细胞术在细菌快速检测中的应用   总被引:8,自引:0,他引:8  
流式细胞仪(Flow cytometer)是集应用流体学、光学、电子学、生物学、免疫学等多门学科和技术于一体的新型高科技仪器。它的核心技术是流式细胞术(Flow cytometry,FCM),该技术是利用流式细胞仪,使单个细胞或其他微小生物粒子处于快速直线流动状态,且逐个通过光束,从而对单个细胞或微粒进行多参数(数量、大小、核酸含量、细胞活性、特定菌群或物种等)定量分析和分选的检测技术,具有快速、灵敏、精确以及便于操作等突出优点。本文简要介绍流式细胞仪的原理,并论述流式细胞技术在实验室研究、工业生产、临床诊断、环境评估等领域的细菌快速检测应用。  相似文献   

10.
L W Terstappen  D Johnson  R A Mickaels  J Chen  G Olds  J T Hawkins  M R Loken  J Levin 《Blood cells》1991,17(3):585-602; discussion 603-5
Forward light scattering, orthogonal light scattering, and the fluorescence intensities of unlysed peripheral blood cells, labeled with CD45-phycoerythrin and the nucleic acid dyes LDS-751 and thiazole orange, were measured simultaneously, utilizing a flow cytometer. Erythrocytes, reticulocytes, platelets, neutrophils, eosinophils, basophils, monocytes, lymphocytes, nucleated erythrocytes, and immature nucleated cells occupied unique positions in the five-dimensional space created by the listmode storage of the five independent parameters. A software program was developed which identified and enumerated each of these cell populations. Platelets in this study were identified by LDS-751 staining, in addition to their forward and orthogonal light-scattering characteristics. Validation of this approach was obtained by demonstrating that all CD41- or CD42-expressing platelets also stained with LDS-751. Furthermore, the staining by LDS-751 did not change following platelet activation with ADP. The quantification of erythrocytes, platelets, neutrophils, eosinophils, monocytes, and lymphocytes correlated well with data obtained with a commercial hematology whole blood analyzer (H-1). Reproducibility of the identification of these populations was shown by repeated measurement of the same sample and by staining and analysis of multiple aliquots of identical blood samples. Stability studies demonstrated that 8 hours after blood collection, the number of damaged cells increased. This could be measured by a greater thiazole orange uptake by the damaged cells. This investigation demonstrates the feasibility of multidimensional flow cytometric blood cell differentiation for an automated whole blood cell analysis without the necessity of erythrocyte lysis. The ability to simultaneously identify reticulocytes, nucleated erythrocytes, and immature nucleated cells in one measurement is unique and promises to be a powerful tool for the assessment of abnormal blood samples.  相似文献   

11.
Here, we describe a yeast-based fluorescence reporter assay for G protein-coupled receptor (GPCR) signalling using a flow cytometer (FCM). The enhanced green fluorescent protein (EGFP) gene was integrated into the FUS1 locus as a reporter gene. The engineered yeast was able to express the EGFP in response to ligand stimulation. Gene-disrupted yeast strains were constructed to evaluate the suitability of the yeast-based fluorescence screening system for heterologous GPCR. When receptor was expressed by episomal plasmid, the proportion of the signalling-activated cells in response to ligand stimulation decreased significantly. The GPCR-signalling-activated and non-activated cell clusters were individually isolated by analysing the fluorescence intensity at the single-cell level with FCM, and it was found that the plasmid retention rate decays markedly in the non-activated cell cluster. We attributed the loss of plasmid to G1 arrest in response to signalling, and successfully improved the plasmid retention rate by disrupting the FAR1 gene and avoiding cell cycle arrest. Our system will be a powerful tool for the quantitative and high-throughput GPCR screening of yeast-based combinatorial libraries using FCM.  相似文献   

12.
BACKGROUND: For resource-poor countries, affordable methods are required for enumeration of CD4(+) T lymphocytes of HIV-positive patients. For infants, additional determination of CD4/CD8 ratio is needed. METHODS: We determine the CD4(+) and CD8(+) T lymphocytes as the CD3(+)CD4(+) and CD3(+)CD8(+) population of blood cells. Target cells are CD3-immunomagnetically separated from the whole blood, and CD4-Phycoerythrin and CD8-PerCP immunofluorescently labeled. A point-of-care single platform image cytometer was developed to enumerate the target CD3(+)CD4(+) and CD3(+)CD8(+) populations. It has light-emitting diodes illumination, is fully computer-controlled, operates from a 12 V battery, and was designed to be cheap and easy-to-handle. Target cells are imaged on a CCD camera and enumerated by an image analysis algorithm. The cytometer outputs the absolute number of CD4(+) and CD8(+) T lymphocytes/microl and CD4/CD8 ratio. RESULTS: The quality of the cell images obtained with the cytometer is sufficient for a reliable enumeration of target cells. The image cytometer achieves an accuracy of better than 10% in the range of 50-1700 cells/microl. Analysis of blood samples from HIV patients yields a good agreement with the TruCount method for CD4 and CD8 count and CD4/CD8 ratio. CONCLUSIONS: The image cytometer is affordable (component costs $3,000), compact (25 x 25 x 20 cm(3)), and uses disposable test materials, making it a good candidate to monitor progression of immunodeficiency disease in resource-poor settings.  相似文献   

13.
A TV type vidicon detector was interfaced to a flow cytometer (FCM) to obtain spectra of fluorophores in cells during flow. The normal operations of the FCM are undisturbed. A spectrograph spreads 320 nm of the fluorophore fluorescence emission across the 500 channels of the detector. Spectra of fluorescamine (a surface labeling agent) and of propidium iodide (a nuclear stain) were obtained from Balb 3T3 cells, and the chlorophyll and phycobilin peaks were resolved from flowing blue-green algae in the FCM. Under typical flow conditions, operation of the vidicon in the continuous mode gives for these fluorophores a S/N of several hundred to one in approximately 3 sec. The vidicon was also gated to obtain spectra of single cells and of cells in selected portions of the cell cycle. For example, the spectrum of fluorescamine was obtained from cells in the G1 phase of the growth cycle by using as a gate trigger the FCM discriminator output derived from the propidium iodide signal.  相似文献   

14.
Lubeck E  Cai L 《Nature methods》2012,9(7):743-748
Fluorescence microscopy is a powerful quantitative tool for exploring regulatory networks in single cells. However, the number of molecular species that can be measured simultaneously is limited by the spectral overlap between fluorophores. Here we demonstrate a simple but general strategy to drastically increase the capacity for multiplex detection of molecules in single cells by using optical super-resolution microscopy (SRM) and combinatorial labeling. As a proof of principle, we labeled mRNAs with unique combinations of fluorophores using fluorescence in situ hybridization (FISH), and resolved the sequences and combinations of fluorophores with SRM. We measured mRNA levels of 32 genes simultaneously in single Saccharomyces cerevisiae cells. These experiments demonstrate that combinatorial labeling and super-resolution imaging of single cells is a natural approach to bring systems biology into single cells.  相似文献   

15.
The CUBIC program displays three-dimensional colored dot plots of flow cytometric trivariate data collected by unmodified commercial instruments (FACScan flow cytometer, FACS 440 cell sorter). Assuming a bimodal distribution of the fluorescence intensity of the cells, the eight theoretical subpopulations involved in a three-color fluorescence histogram are clearly localized in the 3-D space by colored dots that are clustered near each corner of a cubic frame. Rotation, tilting, and zoom functions are available. Table look-up is not needed. CUBIC was illustrated by two experiments: 1) three-color immunofluorescence of antigens on human lymphocytes using monoclonal antibodies conjugated either to fluorescein (FITC), to R-phycoerythrin (PE), or to biotin revealed by a streptavidin coupled to a PE-Texas red tandem conjugate (TC); 2) two-color immunofluorescence of CD4 and CD8 antigens on thymocytes of healthy or preleukemic mice correlated to the DNA content quantified by 7-amino-actinomycin D (7-AAD). The three fluorescences were excited by a single argon-ion laser emitting at 488 nm.  相似文献   

16.
OBJECTIVE: To demonstrate CD36 expression with quantum dots (QDs) 525 and/or 605 on human monocytic U937 cells and atherosclerotic tissue sections by means of flow cytometry (FCM) and/or confocal laser scanning microscopy (CLSM). STUDY DESIGN: U937 cells and tissue sections were analyzed by means of FCM and/or CLSM. FCM was performed, using different ultraviolet (UV) and visible (488/532 nm) excitation modes. In the visible mode, fluorescence intensities of QDs, phycoerythrin (PE) and fluorescein isothiocyanate (FITC) were compared. Three-dimensional (3-D) sequences of images were obtained by spectral analysis in a CLSM and analyzed by the factor analysis of medical image sequences (FAMIS) algorithm, providing factor curves and images. Factor images are the result of the FAMIS image processing method, which differentiates emission spectra from 3D sequences of images. In CLSM analysis, preparations are screened in a UV excitation mode to optimize the possibilities of QDs and have the benefit of 4',6-diamino-2-phenylindole or Hoechst 33342 counterstaining of nuclei. RESULTS: FCM and CLSM revealed CD36 expression by means of QDs 525 and/or 605. Fluorescence intensity of PE and of FITC was higher than that of QDs 525 and of 605. As factor curves and images show the red emission of QDs 605 only, subsequent reliable identification and localization of CD36 was obtained. CONCLUSION: QDs 525 and 605 are useful to analyze antigenic expression. Following FCM, which is well adapted to detect fluorescence emission of QDs in the UV or visible excitation mode, CLSM and subsequent spectral analysis assess more specific characterization of QD fluorescent emissions.  相似文献   

17.
J Zhu  M L Musco  M J Grace 《Cytometry》1999,37(1):51-59
BACKGROUND: The ability to quickly analyze and sort double or triple fluorescent reporter constructs using simultaneous analysis provides significant flexibility in the solution of analytical and process-related questions in biotechnology. METHODS: Bicistronic eBFP/eGFP and eBFP/eYFP constructs were made on two mammalian episomal plasmids using an internal ribosomal entry sequence from encephalomyocarditis virus (EMCV-IRES) to link two GFP expressions. Simultaneous two-color flow cytometry (FCM) analysis was accomplished using a dual Argon-laser multi-line configuration set at excitation wavelengths of 360 and 488 nm. Blue fluorescence emission (440 nm) and green fluorescence emission (507 nm) were detected using 405/20 (FL4) and 510/20 (FL1) bandpass filters. Dual eBFP/eYFP and three-color simultaneous analysis of eBFP/eGFP/eYFP was accomplished using the dual-laser configuration but also using a short-pass (525-nm) dichroic mirror and 550/30 bandpass filter configuration to detect yellow fluorescence emission (527 nm) in a third channel (FL2). RESULTS: Human 293 cells transfected with the bicistronic construct of eBFP-IRES-eGFP were easily detected using simultaneous analysis, and the signals were well separated with a mean blue fluorescent intensity (MFI) in the 2nd-log decade (FL4) and green MFI in the 4th-log decade (FL1). Likewise, eBFP-IRES-eYFP transfected cells were as easily detected and also demonstrated very good signal separation. A tricistronic construct of eBFP-IRES-eGFP-IRES-eYFP was also made and transfected into 293 cells. Triple-color fluorescent cells were easily detected using the cytometer configuration for simultaneous analysis. All three signals separated with only moderate compensation required for green and yellow emission spectra. The respective MFI for each of the fluorescent proteins was correlative to what had been observed with the separate bicistronic constructs. CONCLUSIONS: Our results demonstrate that we have developed a novel fluorescent flow cytometry method that can be used as a powerful tool to differentiate and analyze three colors simultaneously from either a dual or a triple cistronic construct which has been transfected into living cells.  相似文献   

18.
Resolving leukocytes using axial light loss   总被引:1,自引:0,他引:1  
Axial light loss (ALL) is the measurement of the total light lost from the laser beam at 0 degrees when a particle passes through the beam. Used in combination with the monoclonal antibody CD45, ALL can effectively resolve lymphocytes, monocytes, granulocytes, and dead cells in viable or fixed preparations of human peripheral blood. A bivariate display of ALL vs. CD45 clearly resolves all granulocytes from lymphocytes; although degranulated granulocytes cannot be resolved with forward-angle and right-angle light scatter, they are clearly resolved in right-angle scatter vs. CD45. A blood differential can be performed, with a single laser flow cytometer and three colors of fluorescence, when ALL is combined with fluoresceinated CD45 to resolve leukocytes, phycoerythrin-labeled NKH1 to resolve natural killer cells, and biotinylated CD3 in combination with DuoCHROME, the phycoerythrin/Texas red conjugate fluorochrome from Becton Dickinson, to resolve T-cells. B-cells are the only cells negative for both phycoerythrin and Texas red. When PE CD4 is included, the CD3+ CD4+ T-cell subset is resolved from the CD3+ CD4- subset comprising mainly the CD3+ CD8+ T-cell subset. The addition of propidium iodide is unnecessary since ALL clearly resolves dead cells in a viable preparation of human peripheral blood. Furthermore, since ALL resolves these cells even after fixation in paraformaldehyde, all samples can be fixed prior to analysis, thereby minimizing the potential biohazard risk.  相似文献   

19.
Electronic white blood cell (WBC) differential by standard cytology (hematology analyzer and visual inspection of blood smears) is limited to five types and identification of abnormal cells is only qualitative, often problematic, poorly reproducible, and labour costing. We present our results on WBC differential by flow cytometry (FCM) with a 6 markers, 5 colors CD36-FITC/CD2-PE+CRTH2-PE/CD19-ECD/CD16-Cy5/CD45-Cy7 combination, on 379 subjects, with detection of 12 different circulating cell types, among them 11 were quantified. Detection of quantitative abnormalities of whole leucocytes, neutrophils, eosinophils, basophils, monocytes, or lymphocytes was comparable by FCM and by standard cytology in terms of sensitivity and specificity. FCM was better than standard cytology in detection and quantification of circulating blast cells or immature granulocytes, with a first lineage orientation in the former case. All cases of lymphocytosis, with lineage assignment, were detected by FCM. FCM identified a group of patients with excess of CD16pos monocytes as those having an inflammatory syndrome. WBC differential by FCM is at least as reliable as by standard cytology. FCM superiority consists in identification and systematic quantification of parameters that cannot be assessed by standard cytology such as lineage orientation of blast cells or lymphocytes, and expression of markers of interest such as CD16 on inflammatory monocytes.  相似文献   

20.
BACKGROUND: Although the flow cytometer has become the standard in cell analysis, it has limitations. Recently, we introduced a new cell analysis method based on immunomagnetic selection and aligning of cells. No flow system is needed and cell analysis can be performed in whole blood. METHODS: Whole blood is incubated with fluorescent labels and immunomagnetic nanoparticles. The blood is injected into a capillary that is in a strong magnetic field. The immunomagnetic-labeled cells move upward and align themselves along ferromagnetic lines present on the upper surface of the capillary. An optical focus and tracking system analogous to that used in a conventional compact disk player focuses a 635-nm laser-diode on the magnetically aligned cells. The emitted fluorescence signals are projected on two photomultipliers. Allophycocyanin (APC)-labeled CD4 (CD4-APC) and Cyanin5.5 (Cy5.5)-labeled CD8 (CD8-Cy5.5) antibodies and Oxazine750, all red excited, are used as fluorescent labels. RESULTS: A differential white blood cell count performed in whole blood is obtained using the CD4-APC in combination with Oxazine750. The results are compared with the Technicon-H1 hematology analyzer. Correlation coefficients of 0.91 for neutrophilic granulocytes, 0.93 for lymphocytes, 0.93 for monocytes, and 0.96 for eosinophilic granulocytes were obtained. Immunofluorescence is demonstrated using CD4-APC and CD8-Cy5.5. The absolute counts obtained for CD4+ and CD8+ are compared with the Coulter Epics XL flow cytometer. Correlation coefficients of, respectively, 0.91 and 0.94 were obtained. CONCLUSION: We conclude that our system is as capable as a standard flow cytometer or hematology analyzer for a reliable routine white blood cell analysis, including immunophenotyping, and can be used as an easy-to-handle disposable white blood cell test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号