首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Homez gene encodes a protein with three atypical homeodomains and two leucine zipper motifs of unknown function. Here we show that during neurula stages, Xenopus Homez is broadly expressed throughout the neural plate, the strongest expression being detected in the domains where primary neurons arise. At later stages, Homez is maintained throughout the central nervous system in differentiating progenitors. In accordance with this expression, Homez is positively regulated by neural inducers and by Ngnr1 and negatively by Notch signaling. Interference with Homez function in embryos by injection of an antisense morpholino oligonucleotide results in the specific disruption of the expression of late neuronal markers, without affecting the expression of earlier neuronal and early neurectodermal markers. Consistent with this finding, Homez inhibition also interferes with the expression of late neuronal markers in Ngnr1 overexpressing animal cap explants and in Notch inhibited embryos. In gain of function experiments, Homez inhibits the expression of late neuronal markers but has no effect on earlier ones. These data suggest a role for Homez in neuronal development downstream of proneural/neurogenic genes.  相似文献   

2.
Rohon-Beard mechanosensory neurons (RBs), neural crest cells, and neurogenic placodes arise at the border of the neural- and non-neural ectoderm during anamniote vertebrate development. Neural crest cells require BMP expressing non-neural ectoderm for their induction. To determine if epidermal ectoderm-derived BMP signaling is also involved in the induction of RB sensory neurons, the medial region of the neural plate from donor Xenopus laevis embryos was transplanted into the non-neural ventral ectoderm of host embryos at the same developmental stage. The neural plate border and RBs were induced at the transplant sites, as shown by expression of Xblimp1, and XHox11L2 and XN-tubulin, respectively. Transplantation studies between pigmented donors and albino hosts showed that neurons are induced both in donor neural and host epidermal tissue. Because an intermediate level of BMP4 signaling is required to induce neural plate border fates, we directly tested BMP4′s ability to induce RBs; beads soaked in either 1 or 10 ng/ml were able to induce RBs in cultured neural plate tissue. Conversely, RBs fail to form when neural plate tissue from embryos with decreased BMP activity, either from injection of noggin or a dominant negative BMP receptor, was transplanted into the non-neural ectoderm of un-manipulated hosts. We conclude that contact between neural and non-neural ectoderm is capable of inducing RBs, that BMP4 can induce RB markers, and that BMP activity is required for induction of ectopic RB sensory neurons.  相似文献   

3.
4.
5.
6.
We have isolated a Xenopus homologue of the mammalian hairy and Enhancer of split related gene HRT1. XHRT1 expression in late gastrula and early neurula embryos is restricted to two stripes of cells in the medial neural plate and in dorsal endodermal cells. At later stages, XHRT1 is expressed in the floor plate, in hypochord cells and in the somitogenic and anterior presomitic mesoderm. By tailbud stage, XHRT1 is also highly expressed in the dorsal hindbrain, telencephalon and eye vesicles, olfactory placodes, pronephros, branchial arches and tail fin. We also show that XHRT1 expression in medial neural cells is induced by Notch signaling and that there are differences in the way XHRT1 and other H/E(spl) genes are regulated.  相似文献   

7.
In zebrafish, cells at the lateral edge of the neural plate become Rohon-Beard primary sensory neurons or neural crest. Delta/Notch signaling is required for neural crest formation. ngn1 is expressed in primary neurons; inhibiting Ngn1 activity prevents Rohon-Beard cell formation but not formation of other primary neurons. Reducing Ngn1 activity in embryos lacking Delta/Notch signaling restores neural crest formation, indicating Delta/Notch signaling inhibits neurogenesis without actively promoting neural crest. Ngn1 activity is also required for later development of dorsal root ganglion sensory neurons; however, Rohon-Beard neurons and dorsal root ganglion neurons are not necessarily derived from the same precursor cell. We propose that temporally distinct episodes of Ngn1 activity in the same precursor population specify these two different types of sensory neurons.  相似文献   

8.
The expression and function of the Src family protein tyrosine kinase Fyn in Xenopus laevis embryos have been examined. In situ hybridization analysis demonstrated nervous system-specific expression of Fyn mRNA in tail-bud embryos. However, a class of primary sensory neurons; that is, Rohon-Beard (RB) neurons, which is positive for immunoglobulin superfamily cell adhesion molecules (CAM), neural cell adhesion molecule (N-CAM) and contactin, is devoid of Fyn expression. Injection of Fyn mRNA into one of the blastomeres at the 2-cell stage led to overexpression of Fyn in the injected half of the tail-bud embryos. Immunolabeling of the embryos with anti-HNK-1 antibody revealed that the peripheral axons of RB neurons were partially misguided and bound to each other to form abnormal subcutaneous fascicles. Similar abnormality was induced by injection of the Fyn overexpression vector. The incidence of abnormality appeared dose-dependent, being 68-92% of the injected embryos at 50-400 pg of mRNA. Co-injection of the contactin antisense vector depleted contactin mRNA accumulation without affecting Fyn overexpression and reduced the incidence of the abnormal RB-cell phenotype. However, the N-CAM antisense was ineffective in reducing this abnormality. These results suggest that Fyn can modify signals regulating axonal guidance or fasciculation in the developing X. laevis nervous system and that contactin may affect this action of Fyn.  相似文献   

9.
The cAMP signaling system has been postulated to be involved in embryogenesis of many animal species, however, little is known about its role in embryonic axis formation in vertebrates. In this study, the role of the cAMP signaling pathway in patterning the body plan of the Xenopus embryo was investigated by expressing and activating the exogenous human 5-hydroxytryptamine type 1a receptor (5-HT(1a)R) which inhibits adenylyl cyclase through inhibitory G-protein in embryos in a spatially- and temporally-controlled manner. In embryos, ventral, but not dorsal expression and stimulation of this receptor during blastula and gastrula stages induced secondary axes but were lacking anterior structures. At the molecular level, 5-HT(1a)R stimulation induced expression of the dorsal mesoderm marker genes, and downregulated expression of the ventral markers but had no effect on expression of the pan mesodermal marker gene in ventral marginal zone explants. In addition, ventral expression and stimulation of the receptor partially restored dorsal axis of UV-irradiated axis deficient embryo. Finally, the total mass of cAMP differs between dorsal and ventral regions of blastula and gastrula embryos and this is regulated in a temporally-specific manner. These results suggest that the cAMP signaling system may be involved in the transduction of ventral signals in patterning early embryos.  相似文献   

10.
11.
Rohon Beard (RB) cells are embryonic primary sensory neurons that are removed by programmed cell death during larval development in zebrafish. RB somatosensory functions are taken over by neurons of the dorsal root ganglia (DRG), suggesting that RB cell death may be triggered by the differentiation of these ganglia, as has been proposed to be the case in Xenopus. However, here we show that the timing of RB cell death correlates with reduced expression of trkC1, the receptor for neurotrophin NT-3, but not with the appearance of DRG, which differentiate only after most RB cells die. trkC1 is expressed in subpopulations of RB neurons during development, and cell death is initiated only in trkC1-negative neurons, suggesting a role for TrkC1 and its ligand, NT-3, in RB cell survival. In support of this, antibodies that deplete NT-3 induce RB cell death while exogenous application of NT-3 reduces death. In addition, we show that RB cell death can be prevented using a caspase inhibitor, zVADfmk, showing that during normal development, RB cells die by a caspase-dependent programmed cell death pathway possibly triggered by reduced signaling via TrkC1.  相似文献   

12.
13.
14.
15.
16.
17.
Snir M  Ofir R  Elias S  Frank D 《The EMBO journal》2006,25(15):3664-3674
Cellular competence is defined as a cell's ability to respond to signaling cues as a function of time. In Xenopus laevis, cellular responsiveness to fibroblast growth factor (FGF) changes during development. At blastula stages, FGF induces mesoderm, but at gastrula stages FGF regulates neuroectoderm formation. A Xenopus Oct3/4 homologue gene, XLPOU91, regulates mesoderm to neuroectoderm transitions. Ectopic XLPOU91 expression in Xenopus embryos inhibits FGF induction of Brachyury (Xbra), eliminating mesoderm, whereas neural induction is unaffected. XLPOU91 knockdown induces high levels of Xbra expression, with blastopore closure being delayed to later neurula stages. In morphant ectoderm explants, mesoderm responsiveness to FGF is extended from blastula to gastrula stages. The initial expression of mesoderm and endoderm markers is normal, but neural induction is abolished. Churchill (chch) and Sip1, two genes regulating neural competence, are not expressed in XLPOU91 morphant embryos. Ectopic Sip1 or chch expression rescues the morphant phenotype. Thus, XLPOU91 epistatically lies upstream of chch/Sip1 gene expression, regulating the competence transition that is critical for neural induction. In the absence of XLPOU91 activity, the cues driving proper embryonic cell fates are lost.  相似文献   

18.
In early vertebrate development, mesoderm induction is a crucial event regulated by several factors including the activin, BMP and FGF signaling pathways. While the requirement of FGF in Nodal/activin-induced mesoderm formation has been reported, the fate of the tissue modulated by these signals is not fully understood. Here, we examined the fate of tissues when exogenous activin was added and FGF signaling was inhibited in animal cap explants of Xenopus embryos. Activin-induced dorsal mesoderm was converted to ventral mesoderm by inhibition of FGF signaling. We also found that inhibiting FGF signaling in the dorsal marginal zone, in vegetal-animal cap conjugates or in the presence of the activin signaling component Smad2, converted dorsal mesoderm to ventral mesoderm. The expression and promoter activities of a BMP responsive molecule, PV.1 and a Spemann organizer, noggin, were investigated while FGF signaling was inhibited. PV.1 expression increased, while noggin decreased. In addition, inhibiting BMP-4 signaling abolished ventral mesoderm formation induced by exogenous activin and FGF inhibition. Taken together, these results suggest that the formation of dorso-ventral mesoderm in early Xenopus embryos is regulated by a combination of FGF, activin and BMP signaling.  相似文献   

19.
We have studied the role of Bmp signaling in patterning neural tissue through the use of mutants in the zebrafish that disrupt three different components of a Bmp signaling pathway: swirl/bmp2b, snailhouse/bmp7 and somitabun/smad5. We demonstrate that Bmp signaling is essential for the establishment of the prospective neural crest and dorsal sensory Rohon-Beard neurons of the spinal cord. Moreover, Bmp signaling is necessary to limit the number of intermediate-positioned lim1+ interneurons of the spinal cord, as observed by the dramatic expansion of these prospective interneurons in many mutant embryos. Our analysis also suggests a positive role for Bmp signaling in the specification of these interneurons, which is independent of Bmp2b/Swirl activity. We found that a presumptive ventral signal, Hh signaling, acts to restrict the amount of dorsal sensory neurons and trunk neural crest. This restriction appears to occur very early in neural tissue development, likely prior to notochord or floor plate formation. A similar early role for Bmp signaling is suggested in the specification of dorsal neural cell types, since the bmp2b/swirl and bmp7/snailhouse genes are only coexpressed during gastrulation and within the tail bud, and are not found in the dorsal neural tube or overlying epidermal ectoderm. Thus, a gastrula Bmp2b/Swirl and Bmp7/Snailhouse-dependent activity gradient may not only act in the specification of the embryonic dorsoventral axis, but may also function in establishing dorsal and intermediate neuronal cell types of the spinal cord.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号