首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to investigate the effects of endogenous endothelin on renal excretory function in spontaneously hypertensive rats (SHR) after inhibition of NO synthesis. The effects of non-selective ET(A)/ET(B) receptor blockade on L-NAME-induced changes in renal excretory function and blood pressure (BP) were investigated in conscious, SHR and normotensive Wistar rats with implanted catheters in the bladder for urine collection, in the femoral artery for BP registration and in the femoral vein for L-NAME and bosentan administration. L-NAME increased systolic, mean and diastolic BP, diuresis, sodium and chloride excretion (p < 0.01) in both normotensive and hypertensive rats but bosentan returned the values of diuresis, sodium and chloride excretion to control level without any changes in BP in normotensive rats. In SHR the effects of L-NAME were reduced after bosentan (p < 0.05) but the values of diuresis, sodium and chloride excretion still remained statistically significant as compared to control level despite the fact that bosentan lowered mean and diastolic BP increased due to L-NAME administration. Endogenous endothelins participate in a different manner in the rise of BP and in the changes in renal excretory function that develops after L-NAME-induced NO synthase inhibition in normotensive rats and in SHR.  相似文献   

2.
The role of renal nerves in the effects of concomitant NO synthase and non-selective ET(A/)ET(B) receptor inhibition on renal function was investigated in conscious normotensive Wistar rats. NO synthase inhibition alone (10 mg/kg b. w. i.v. L-NAME) in sham-operated rats with intact renal nerves induced an increase in systolic, diastolic and mean arterial pressure, urine flow rate, sodium, chloride and calcium excretion (p<0.05). The effect of L-NAME was markedly reduced by bosentan (10 mg/kg b.w. i.v.) and the values of urine flow rate, sodium, chloride and calcium excretions returned to control level (p<0.05). L-NAME administration one week after a bilateral renal denervation increased blood pressure to a similar extent as in sham-operated rats but decreased urine flow rate (p<0.05) and did not change electrolyte excretion. ET(A/)ET(B) receptor inhibition with bosentan during NO synthase inhibition in the renal denervated rats did not produce changes in urine flow rate or electrolyte excretion. NO synthase inhibition as well as concurrent NO synthase and ET(A/)ET(B) receptor inhibition did not change clearance of inulin or paraaminohippuric acid in sham-operated or renal denervated rats. These results indicate that renal sympathetic nerves play an important modulatory role in NO and endothelin induced effects on renal excretory function.  相似文献   

3.
The effects of nonselective ET(A)/ET(B) receptor blockade with intravenous bolus injection of bosentan (10 mg/kg) on renal excretory function and blood pressure were investigated in conscious, male, normotensive Wistar rats before and one week after bilateral renal denervation. Renal denervation was followed by an increase in urine flow rate from 4.54+/-0.38 to 5.72+/-0.36 microl/min x 100 g b.w. (p<0.05) and a decrease in urine osmolality from 855.5+/-44.6 to 707.4+/-47.5 mosm/kg H(2)O (p<0.05). Bosentan administration in sham-operated rats resulted in decrease in urine flow rate from 4.54+/-0.38 to 3.49+/-0.34 microl/min x 100 g b.w. (p<0.05), and increase in urine osmolality from 855.5+/-44.6 to 1075.0+/-76.1 mosm/kg H(2)O (p<0.05). Sodium excretion decreased from 226.9+/-20.0 to 155.1+/-11.0 nmol/min x 100 g b.w. (p<0.01). Bosentan administration in renal denervated rats did not produce any changes in renal water or electrolyte excrections. Blood pressure, heart rate, clearance of Inulin or clearance of paraaminohippuric acid (PAH) did not change in sham-operated or renal denervated rats during nonselective ET(A)/ET(B) receptor blockade. Bosentan did not alter the baroreflex sensitivity or sympatho-vagal balance in sham-operated or renal denervated rats. In conclusion, an interaction between renal nerves and endothelins appears to be involved in the regulation of the renal excretory function.  相似文献   

4.
Blood pressure fluctuates continuously throughout life and autoregulation is the primary mechanism that isolates the kidney from this fluctuation. Compared with Wistar rats, Brown Norway (B-N) rats display impaired renal myogenic autoregulation when blood pressure fluctuation is increased. They also are very susceptible to hypertension-induced renal injury. Because blockade of nitric oxide augments myogenic autoregulation in Wistar rats, we compared the response of the myogenic system in B-N rats to nitric oxide blockade with that of other strains [Wistar, Sprague-Dawley, Long-Evans, spontaneously hypertensive (SHR)]. Renal blood flow dynamics were assessed in isoflurane anesthetized rats before and after inhibition of nitric oxide synthase by Lomega-nitro-arginine methyl-ester (L-NAME, 10 mg/kg, iv). Under control conditions, myogenic autoregulation in the B-N rats was weaker than in the other strains. Myogenic autoregulation was not augmented after L-NAME administration in the SHR, but was augmented in all the normotensive rats. The enhancement was significantly greater in B-N rats so that after L-NAME the efficiency of autoregulation did not differ among the strains. The data suggest that nitric oxide is involved in the impaired myogenic autoregulation seen in B-N rats. Furthermore, the similarity of response in Wistar, Long-Evans, and Sprague-Dawley rats suggests that modulation by nitric oxide is a fundamental property of renal myogenic autoregulation.  相似文献   

5.
Nitric oxide (NO) is important for the homeostasis of organ functions. We studied the structural and functional changes in the cardiovascular (CV) and renal systems following early NO deprivation by various nonspecific and specific NO synthase (NOS) inhibitors: N-nitro-L-arginine methyl ester (L-NAME), N-nitro-L-arginine (L-NA), S-methyl-isothiourea (SMT), and L-N6-(1-iminoethyl)-lysine (L-Nil). The aim is to elucidate the involvement of NO through endothelial or inducible NOS (eNOS and iNOS). Drugs were given to spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar Kyoto rats (WKY) from a young age (5-wk-old). Physiological, biochemical, and pathological examinations were performed. L-NAME and L-NA treatment caused a rapid increase in tail cuff pressure (TCP). The TCP of SHR reached a malignant level within 30 days with signs of stroke, proteinuria [corrected] severe glomerular sclerosis, and moderate ventricular hypertrophy (VH). The plasma nitrite/nitrate was reduced, while creatinine, urea nitrogen and uric acid were elevated. The renal tissue cyclic guanosine monophosphate (cGMP) was decreased with an elevated collagen content. The numbers of sclerotic glomeruli, arteriolar and glomerular injury scores were markedly increased, accompanied by reduction in renal blood flow, filtration rate, and fraction. Plasma endothelin-1 was increased following L,-NAME or L-NA treatment for 10 days. The expression of eNOS and iNOS mRNA was depressed by L-NAME and L-NA. The relevant iNOS inhibitors, SMT and L-Nil depressed the iNOS expression, but did not produce significant changes in CV and renal systems. The continuous release of NO via the eNOS system provides a compensatory mechanism to prevent the genetically hypertensive rats from rapid progression to malignant phase. Removal of this compensation results in VH, stroke, glomerular damage, renal function impairment, and sudden death.  相似文献   

6.
The aim of this study was to evaluate the role of nitric oxide (NO) in the mechanisms of arterial distensibility and intravascular pressure stability in normotensive and spontaneously hypertensive rats. The experiments were performed on the anesthetized male Wistar, Wistar-Kyoto (WKY), and spontaneously hypertensive rats (SHR). The abdominal aorta was cannulated and perfused with variable blood flow rates with subsequent determination of major characteristics of regional vascular function. The blockade of nitric oxide (NO) synthase resulted in the increase in hydraulic resistance of the hindlimb vascular bed in all series of the experiments. It was associated with the decrease in the intravascular pressure stability. The obtained results provide further evidence for an important role of NO in the formation of conductivity and stability of the arterial pressure both in normo- and hypertensive rats. However, the involvement of NO in the phenomenon of flow-dependent vasodilation in SHR is unlikely. The major difference between SHR and normotensive rats involved the ability of the resistive arteries of SHR to enhance vascular conductivity in response to blood flow enhancement. Presumably, there are some unidentified additional factors that are involved in the flow-dependent vasodilation in SHR.  相似文献   

7.
We investigated the renal structural and functional consequences of nitric oxide (NO) deficiency co-treated with angiotensin-converting enzyme inhibitor (ACEi) in 20 adult male Wistar rats and 20 spontaneously hypertensive rats (SHR). The animals were separated into eight groups (n = 5) and treated for 30 days: Control, L-NAME (NO deficient group), Enalapril, L-NAME + Enalapril. The elevated blood pressure in NO deficient rats was partially reduced by enalapril. Serum creatinine was elevated in L-NAME-SHRs and effectively treated with enalapril. The proteinuria was significantly higher only in L-NAME-SHRs, and this was reduced by treatment with ACEi. The glomerular volume density (Vv(gl)) in L-NAME rats, both Wistar and SHR, was greater than in matched control rats, and enalapril treatment effectively prevented this Vv(gl) increase. No significant differences were observed in tubular volume density, Vv(tub), or tubular surface density, Sv(tub), in all Wistar groups. The Vv(tub) was smaller in L-NAME-SHRs than in control SHRs, and this tubular alteration was not prevented by enalapril. The Sv(tub) was not different among the SHR groups. In Wistar rats no changes were seen in vascular surface density, but a greatly increased cortical vascular volume density was seen in the enalapril treated rats. The vascular length density was greatly diminished in NO deficient rats that was effectively prevented with enalapril treatment. The vascular cortical renal stereological indices are normally reduced in SHRs. Administration of enalapril, but not L-NAME, changed this tendency. However, enalapril was not totally effective in preventing vascular damage in SHR NO deficient animals.  相似文献   

8.
In an earlier study, we found increased NO production and NO synthase (NOS) expression in renal and vascular tissues of prehypertensive and adult spontaneously hypertensive rats (SHR). This study was designed to determine the effects of aging and AT-1 receptor blockade (losartan 30 mg/kg/day beginning at 8 weeks of age) on NO system in this model. Compared to the Wistar Kyoto (WKY) control rats, untreated SHR showed severe hypertension, elevated urinary NO metabolite (NO(chi)) excretion, marked upregulations of renal and vascular eNOS and iNOS proteins, normal renal function and heart weight at 9 weeks of age. Hypertension control with either AT-1 receptor or calcium channel blockade (felodipine 5 mg/kg/day) mitigated upregulation of NOS isoforms in the young SHR. With advanced age (63 weeks), the untreated SHR showed increased proteinuria, renal insufficiency, cardiomegaly, reduced urinary NO(chi) excretion and depressed renal and vascular NOS protein expressions as compared to the corresponding WKY group. AT-1 receptor blockade prevented proteinuria, renal insufficiency, cardiomegaly, and renal and vascular NOS deficiency. Thus, in young SHR, hypertension results in compensatory upregulation of renal and vascular NOS, which can be attenuated by vigorous antihypertensive therapy. With advanced age, untreated SHR exhibit cardiomegaly, renal dysfunction and marked reductions of eNOS and iNOS compared with the aged WKY rats. Hypertension control with AT-1 receptor blockade initiated early in the course of the disease prevents target organ damage and preserves renal and vascular NOS.  相似文献   

9.
Nitric Oxide in Systemic and Pulmonary Hypertension   总被引:2,自引:0,他引:2  
Endothelium-derived nitric oxide (NO) is an important gas molecule in the regulation of vascular tone and arterial pressure. It has been considered that endothelial dysfunction with impairment of NO production contributes to a hypertensive state. Alternatively, long-term hypertension may affect the endothelial function, depress NO production, and thereby reduce the dilator action on vasculatures. There were many studies to support that endothelium-dependent vasodilatation was impaired in animals and humans with long-term hypertension. However, results of some reports were not always consistent with this consensus. Recent experiments in our laboratory revealed that an NO synthase inhibitor, NG-nitro-L-arginine monomethyl ester (L-NAME) caused elevation of arterial pressure (AP) in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). The magnitude of AP increase following NO blockade with L-NAME was much higher in SHR than WKY. In other experiments with the use of arterial impedance analysis, we found that L-NAME slightly or little affected the pulsatile hemodynamics including characteristic impedance, wave reflection and ventricular work. Furthermore, these changes were not different between SHR and WKY. The increase in AP and total peripheral resistance (TPR) following NO blockade in SHR were significantly greater than those in WKY, despite higher resting values of AP and TPR in SHR. In connection with the results of other studies, we propose that heterogeneity with respect to the involvement of NO (impairment, no change or enhancement) in the development of hypertension may exist among animal species, hypertensive models and different organ vessels. Our study in SHR provide evidence to indicate that the effects of basal release of NO on the arterial pressure and peripheral resistance are not impaired, but enhanced in the hypertensive state. The increase in NO production may provide a compensatory mechanism to keep the blood pressure and peripheral resistance at lower levels. The phenomenon of enhanced NO release also occurs in certain type of pulmonary hypertension. We first hypothesized that a decrease in NO formation might be responsible for the pulmonary vasoconstriction during hypoxia. With the measurement of NO release in the pulmonary vein, we found that ventilatory hypoxia produced pulmonary hypertension accompanying an increase in NO production. Addition of NO inhibitor (L-NAME), blood or RBC into the perfusate attenuated or abolished the NO release, while potentiating pulmonary vasoconstriction. During hypoxia, the increased NO formation in the pulmonary circulation similarly exerts a compensatory mechanism to offset the degree of pulmonary vasoconstriction.  相似文献   

10.
The study investigated the effect of chronic crowding stress on vascular function and nitric oxide (NO) production in rats with various family history of hypertension. Wistar (W), wBHR (offspring of W dams and spontaneously hypertensive sires), sBHR (offspring of spontaneously hypertensive dams and W sires) and spontaneously hypertensive rats (SHR) were used. Twelve-week-old males were divided into the control or crowded group for eight weeks. Basal blood pressure (BP, determined by tail-cuff plethysmography) of W, wBHR, sBHR and SHR rats was 112 +/- 3, 129 +/- 2, 135 +/- 2 and 187 +/- 3 mmHg, respectively. Crowding increased BP and reduced aortic NO synthase activity only in sBHR and SHR rats, without alterations in hypothalamic NO production. Acetylcholine-induced vasorelaxation of the femoral artery of stress-exposed rats was improved in W, unaltered in wBHR and sBHR and reduced in SHR. Crowding reduced serotonin-induced vasoconstriction in W and wBHR rats but had no effect in sBHR and SHR rats. In conclusion, the results suggest that crowded offspring of normotensive mothers were able to modify their vascular function in order to maintain BP at normal levels. On the other hand, offspring of hypertensive mothers were unable of effective adaptation of vascular function in stressful conditions resulting in gradual development of hypertension.  相似文献   

11.
The aim of our study was to search for abnormalities of sodium and potassium transport in erythrocytes of male Wistar rats subjected to chronic L-NAME treatment (40 mg/kg/day) for 4 weeks either from weaning (4-week-old) or in adulthood (12-week-old). Sodium content, Na(+),K(+)-pump and Na(+),K(+)-cotransport activity, cation leaks as well as membrane cholesterol and phospholipid contents were determined in fresh erythrocytes. Chronic inhibition of NO synthase elicited similar blood pressure rise in both age groups which did not differ in the degree of NO synthase inhibition. No significant ion transport abnormalities were disclosed in erythrocytes of young NO-deficient rats, whereas erythrocyte Na(+) content, outward Na(+),K(+)-cotransport and inward Na(+) leak were significantly reduced in adult hypertensive animals compared to age-matched controls. It should be noted that the erythrocytes of adult control rats were characterized by higher activity of Na(+),K(+)-pump and Na(+),K(+)-cotransport, increased Na(+) and Rb(+) leaks and elevated membrane cholesterol content compared to those of young normotensive controls. Increased Na(+) leak and elevated membrane cholesterol content but reduced membrane phospholipid content were revealed in erythrocytes of adult hypertensive rats when compared to young hypertensive rats. It can be concluded that young and adult Wistar rats did not differ in the extent of NO synthase inhibition and blood pressure rise elicited by chronic L-NAME treatment. Our results exclude the important participation of classical sodium transport abnormalities in the pathogenesis of this NO-deficient form of experimental hypertension.  相似文献   

12.
The results of electron microscopic studies of the synthesis and secretion of atrial natriuretic factor (ANF) in right atrial cardiomyocytes of spontaneously hypertensive rats (SHR) and the corresponding normotensive controls are presented. Enhanced secretory activity in cardiomyocytes of SHR has been revealed. The role of enhanced ANF secretion in the origin of arterial hypertension is discussed. It is suggested that enhanced ANF secretion can be attributed to increased ANF demand in BP elevation, changes in the renal function in hypertensive subjects or genetic defect in the excretory renal function in SHR.  相似文献   

13.
To test the hypothesis that activation of the endothelin type A (ET(A)) receptor contributes to decreased renal excretory function and increased blood pressure in sensory nerve-degenerated rats fed a high-salt diet, neonatal Wistar rats were given vehicle or capsaicin (CAP, 50 mg/kg s.c.) on the first and second day of life. After being weaned, vehicle or CAP-treated rats were fed a normal (NS, 0.5%) or a high- (HS, 4%) sodium diet for 2 wk with or without ABT-627 (5 mg x kg(-1) x day(-1), a selective ET(A) receptor antagonist). Systolic blood pressure increased in CAP-treated rats fed a HS diet (CAP-HS) compared with vehicle-treated rats fed a HS diet (CON-HS, 145 +/- 7 vs. 89 +/- 5 mmHg, P < 0.05). Creatinine clearance and fractional sodium excretion (FE(Na)) decreased in CAP-HS rats compared with CON-HS rats (creatinine clearance, 0.54 +/- 0.05 vs. 0.81 +/- 0.09 ml x min(-1) x 100 g body wt(-1); FE(Na), 8.68 +/- 0.99 vs. 12.53 +/- 1.47%, respectively; P < 0.05). Water and sodium balance increased in CAP-HS rats compared with CON-HS (water balance, 20.2 +/- 1.5 vs. 15.5 +/- 1.9 ml/day; sodium balance, 11.9 +/- 3.1 vs. 2.4 +/- 0.3 meq/day, respectively; P < 0.05). The endothelin (ET)-1 levels in plasma and isolated glomeruli increased by about twofold in CAP-HS rats compared with CON-HS rats (P < 0.05). ABT-627 prevented the decrease in creatinine clearance and FE(Na), the increase in water and sodium balance, and the increase in blood pressure in CAP-HS rats (P < 0.05). Therefore, the blockade of the ET(A) receptor ameliorates the impairment of renal excretory function and prevents the elevation in blood pressure in salt-sensitive hypertension induced by degeneration of sensory nerves, indicating that the activation of the ET(A) receptor impairs renal function and contributes to the development of a salt-induced increase in blood pressure in this model.  相似文献   

14.
Endothelin 1 (ET-1) is a potent vasoactive and mitogenic peptide that is thought to participate in the hemodynamic effects elicited by drugs that block the biosynthesis and release of endothelium-derived nitric oxide (NO), such as NO synthase inhibitors. Using the nonpeptide endothelin receptor antagonists bosentan and LU-135252, we tested the hypothesis that endothelins contribute to the pressor activity of diaspirin-crosslinked hemoglobin (DCLHb), a hemoglobin-based oxygen carrier, whose pressor activity in mammals is attributed primarily to a scavenging action towards NO. The NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME), ET-1, and noradrenaline (NA) were used as reference drugs. Bosentan markedly reduced the pressor effects elicited by DCLHb, L-NAME, and ET-1, but not those evoked by NA. LU-135252 attenuated the pressor effect elicited by DCLHb and ET-1, but not that produced by L-NAME or NA. The decreases in heart rate associated with the pressor effect of DCLHb and L-NAME were reduced by LU-135252, whereas only those elicited by DCLHb were attenuated by bosentan. In contrast with bosentan, LU-135252 caused a decrease in the baseline blood pressure and heart rate. These results suggest that endothelins may participate in the pressor activity of DCLHb. They suggest also that nonpeptide endothelin receptor antagonists such as bosentan or LU-135252 may be useful to counteract endothelin-mediated undesirable hemodynamic effects of drugs that inhibit the activity of the NO system.  相似文献   

15.
Long-term nitric oxide (NO) blockade is known to induce a severe and progressive hypertension. The influence of the salt-intake on atrial natriuretic peptide (ANP) system in this hypertension model is unknown. The aim of this study was to evaluate ANP plasma levels, content and mRNA in atria of male Wistar rats chronically treated with oral Nomega-nitro-L-arginine methyl ester (L-NAME) after 4 weeks of high-salt diet. The high-salt diet induced an increase (P < 0.05) in ANP plasma levels in normotensive rats and no significant changes in hypertensive animals. We observed a significant increase in the ANP content in the left and right atria of hypertensive rats (P < 0.001) when compared to normotensive ones. However, no significant changes were observed during high-salt diet in normotensive and hypertensive animals. Northern blot analysis revealed that ANP gene expression is higher in the right and left atria of hypertensive rats when compared to normotensive rats. However, we found no significant changes in ANP mRNA of rats treated with high-salt diet in normotensive and hypertensive rats when compared to low-salt diet. The present observations indicate no interaction between salt-intake and activation of the ANP system during chronic nitric oxide synthase (NOS) inhibition.  相似文献   

16.
L-carnitine and propionyl-L-carnitine are supplements to therapy in cardiovascular pathologies. Their effect on endothelial dysfunction in hypertension was studied after treatment with either 200 mg/kg of L-carnitine or propionyl-L-carnitine during 8 weeks of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Endothelial function was assessed in aortic rings by carbachol-induced relaxation (CCh 10(-8) to 10(-4) M) and factors involved were characterized in the presence of the inhibitors: L-NAME, indomethacin, the TXA2/PGH2 Tp receptor antagonist ICI-192,605 and the thromboxane synthetase inhibitor-Tp receptor antagonist, Ro-68,070. The effect on phenylephrine-induced contractions was also observed. To identify the nature of vasoactive COX-derived products, enzyme-immunoassay of incubation media was assessed. Involvement of reactive oxygen species was evaluated by incubating with superoxide dismutase and catalase. Nitric oxide production was evaluated by serum concentration of NO2+NO3.Treatment with both compounds improved endothelial function of rings from SHR without blood pressure change. Propionyl-L-carnitine increased NO participation in WKY and SHR. L-carnitine reduced endothelium-dependent responses to CCh in WKY due to an increase of TXA2 production. In both SHR and WKY, L-carnitine enhanced concentration of PGI2 and increased participation of NO. Results in the presence of SOD plus catalase show that it might be related to antioxidant properties of L-carnitine and propionyl-L-carnitine. Comparison between the effect of both compounds shows that both may reduce reactive oxygen species and increase NO participation in endothelium-dependent relaxations in SHR. However, only L-carnitine was able to increase the release of the vasodilator PGI2 and even enhanced TXA2 production in normotensive rats.  相似文献   

17.
The kidney NO synthase is one of the most important renal controlling systems. This paper aims the quantification of renal cortical components involved in blood pressure regulation under NOs blockade. Spontaneous hypertensive rats (SHRs) are submitted to chronic blockade of NOs by L-nitro-arginine-methyl-ester (L-NAME) and an ACE inhibitor (enalapril) in comparison with the normotensive Wistar rats. Twenty SHRs and 5 Wistar rats were divided in 5 groups and observed for 21 days for blood pressure (BP) and serum creatinine: control Wistar (5) (C-W), control SHR (5) (C-SHR), L-SHR (5) - received L-NAME 30 mg/kg/day, L+E-SHR (5) - received L-NAME and Enalapril maleate 15 mg/kg/day, E-SHR (5) - received Enalapril maleate. A quantitative morphometric study (glomerular density, QA[g1], interstitium volume density, Vv[i], tubular surface and length densities, Sv[t] and Lv[t]) were performed at the end. The BP reached 226±15 mmHg in L-SHR group. The BP difference between the L-SHR and the C-SHR groups was significant from the first week while the E-SHR group became significant from the second week. At the end of the experiment the BP of the E-SHR group was similar to the BP in the C-W group. The QA[g1] was similar among C-SHR, L-SHR and L+E-SHR groups and no difference was found between E-SHR and C-W groups. In the L-SHRs serum creatinine was greatly increased, and microscopy showed thickening of arteriolar tunica media with an increase of the wall-to-lumen ratio, perivascular fibrosis, inflammatory infiltrated, tubular atrophy and interstitial fibrosis with focal segmental glomerulosclerosis. The use of enalapril was not completely efficient in reducing BP and morphological injury when the hypertension of SHRs was increased with the NOs blockade suggesting that NO deficiency-induced hypertension is not entirely mediated by the RAAS.  相似文献   

18.
The objective of this study was to determine the effect of N(G)-monomethyl-L-arginine (L-NMMA) infusion on plasma renin activity (PRA) in the presence or absence of the renal nerves in normotensive Wistar-Kyoto (WKY) rats and Okamoto spontaneously hypertensive rats (SHR). All rats were unilaterally nephrectomized two weeks before the acute experiment. On the day of the experiment, acute renal denervation (Dnx) of the remaining kidney was performed in one group of WKY rats (Dnx-WKY; n= 10) and one group of SHRs (Dnx-SHR: n=7). The renal nerves were left intact in a group of WKY rats (Inn-WKY; n=8) and SHRs (Inn-SHR; n=9). After a control clearance period, L-NMMA was administered i.v. (15 mg/kg bolus followed by 500 microg/kg/min infusion) and another clearance period of 20 min was taken. In all experimental groups L-NMMA infusion resulted in a significant natriuresis. L-NMMA infusion increased fractional excretion of sodium (FE(Na)) to a greater extent in the Inn-SHR than in the Inn-WKY (delta FE(Na) = 5.23+/-0.87% vs delta FE(Na) = 2.87+/-0.73% respectively; P=0.05), PRA did not change in the SHR with the infusion of L-NMMA. However, in the Inn-WKY group, the natriuresis of L-NMMA infusion was associated with a tendency for lower PRA levels as compared to a group of time control Inn-WKY rats. In Dnx-WKY, the natriuresis of L-NMMA infusion (delta FE(Na) = 4.60+/-0.52%) was associated with a significantly lower level of PRA (4.26+/-1.18 ng AI/ml/hr) as compared to a group of time control Dnx-WKY rats (9.83+/-1.32 ng AI/ml/hr; P<0.05). In the Dnx-SHR, the natriuretic response to L-NMMA infusion was significantly attenuated by renal denervation (delta FE(Na) = 2.36+/-0.34%) and PRA was unchanged. In conclusion, the natriuretic effect of systemic inhibition of nitric oxide (NO) synthesis was associated with decreased PRA in the Dnx-WKY suggesting that a potential interaction exists between NO and the renal nerves in the modulation of PRA in the normotensive WKY rat. Whereas, the natriuretic effect of L-NMMA infusion in the SHR in the presence and absence of the renal nerves, were independent of changes in PRA.  相似文献   

19.
This study sought to identify whether central endothelin (ET) receptor activation contributes to the elevated pressure in spontaneously hypertensive rats (SHR) and whether an ET-stimulated vasopressin (AVP) release mediates the increased pressure. In Wistar Kyoto (WKY) rats, intracerebroventricular ET-1 induced a dose-dependent pressor response that was shifted rightward in SHR. ET(A) antagonism decreased mean arterial pressure in baroreflex-intact SHR (P<0.01), consistent with inhibition of endogenous ET-1, and blocked the pressor response to exogenous ET-1 in both strains. ET-1 increased AVP only after sinoaortic denervation (P<0.05). Contrary to WKY, sinoaortic denervation was required to elicit a significant pressor response with 5 pmol ET-1 in SHR. Sinoaortic denervation permitted ET-1 to increase AVP in both strains, and peripheral V(1) blockade decreased pressure in denervated but not intact rats. After nitroprusside normalized pressure in SHR, the pressor and AVP secretory responses paralleled those in WKY. Thus endogenous ET(A) receptor mechanisms contribute to hypertension, independent of AVP, in baroreflex-intact SHR. Although blunted in the hypertensive state, the arterial baroreflex buffers the ET-1-induced pressor and AVP secretory responses in both strains.  相似文献   

20.
Nitric oxide (NO) is an important reactive molecule in many organisms. A mitochondrial nitric oxide synthase has been described; however, the role of NO in this organelle is not yet fully clear. We tested the effect of intramitochondrial NO on various functions from spontaneously hypertensive rats (SHR) and their normotensive genetic control, Wistar-Kyoto (WKY) rats. While the stimulation of intramitochondrial NOS increased calcium- and phosphate-induced permeability transition pore opening, its inhibition partially prevented it, without affecting membrane potential. Matrix free calcium and the pH decreased with NOS inhibition. Basal [NO] was lower in SHR than in WKY. Our data suggest that intramitochondrial NO plays an important role in mitochondrial regulation during hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号