首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Body temperature and metabolic rate were recorded continuously in two groups of marmots either exposed to seasonally decreasing ambient temperature (15 to 0 degrees C) over the entire hibernation season or to short-duration temperature changes during midwinter. Hibernation bouts were characterized by an initial 95% reduction of metabolic rate facilitating the drop in body temperature and by rhythmic fluctuations during continued hibernation. During midwinter, we observed a constant minimal metabolic rate of 13.6 ml O(2) x kg(-1) x h(-1) between 5 and 15 degrees C ambient temperature, although body temperature increased from 7.8 to 17.6 degrees C, and a proportional increase of metabolic rate below 5 degrees C ambient temperature. This apparent lack of a Q(10) effect shows that energy expenditure is actively downregulated and controlled at a minimum level despite changes in body temperature. However, thermal conductance stayed minimal (7.65 +/- 1.95 ml O(2) x kg(-1) x h(-1) x degrees C(-1)) at all temperatures, thus slowing down cooling velocity when entering hibernation. Basal metabolic rate of summer-active marmots was double that of winter-fasting marmots (370 vs. 190 ml O(2) x kg(-1) x h(-1)). In summary, we provide strong evidence that hibernation is not only a voluntary but a well-regulated strategy to counter food shortage and increased energy demands during winter.  相似文献   

2.
The high expenditure of energy required for endogenous rewarming is one of the widely perceived disadvantages of torpor. However, recent evidence demonstrates that passive rewarming either by the increase of ambient temperature or by basking in the sun appears to be common in heterothermic birds and mammals. As it is presently unknown how radiant heat affects energy expenditure during rewarming from torpor and little is known about how it affects normothermic thermoregulation, we quantified the effects of radiant heat on body temperature and metabolic rate of the small (body mass 25 g) marsupial Sminthopsis macroura in the laboratory. Normothermic resting individuals exposed to radiant heat were able to maintain metabolic rates near basal levels (at 0.91 ml O(2) g(-1) h(-1)) and a constant body temperature down to an ambient temperature of 12 degrees C. In contrast, metabolic rates of individuals without access to radiant heat were 4.5-times higher at an ambient temperature of 12 degrees C and body temperature fell with ambient temperature. During radiant heat-assisted passive rewarming from torpor, animals did not employ shivering but appeared to maximise uptake of radiant heat. Their metabolic rate increased only 3.2-times with a 15- degrees C rise of body temperature (Q(10)=2.2), as predicted by Q(10) effects. In contrast, during active rewarming shivering was intensive and metabolic rates showed an 11.6-times increase. Although body temperature showed a similar absolute change between the beginning and the end of the rewarming process, the overall energetic cost during active rewarming was 6.3-times greater than that during passive, radiant heat-assisted rewarming. Our study demonstrates that energetic models assuming active rewarming from torpor at low ambient temperatures can substantially over-estimate energetic costs. The low energy expenditure during passive arousal provides an alternative explanation as to why daily torpor is common in sunny regions and suggests that the prevalence of torpor in low latitudes may have been under-estimated in the past.  相似文献   

3.
Interrelationships between ambient temperature, activity, and energy metabolism were explored in mice that had been selectively bred for high spontaneous wheel-running activity and their random-bred controls. Animals were exposed to three different ambient temperatures (10, 20 and 30°C) and wheel-running activity and metabolic rate were measured simultaneously. Wheel-running activity was decreased at low ambient temperatures in all animals and was increased in selected animals compared to controls at 20 and 30°C. Resting metabolic rate (RMR) and daily energy expenditure (DEE) decreased with increasing ambient temperature. RMR did not differ between control and selected mice, but mass-specific DEE was increased in selected mice. The cost of activity (measured as the slope of the relationship between metabolic rate and running speed) was similar at all ambient temperatures and in control and selected mice. Heat generated by running apparently did not substitute for heat necessary for thermoregulation. The overall estimate of running costs was 1.2 kJ/km for control mice and selected mice.  相似文献   

4.
Membrane function in mammalian hibernation   总被引:1,自引:0,他引:1  
For homeotherms the maintenance of a high, uniform body temperature requires a constant energy supply and food intake. For many small mammals, the loss of heat in winter exceeds energy supply, particularly when food is scarce. To survive, some animals have developed a capacity for adaptive hypothermia in which they lower their body temperature to a new regulatory set-point, usually a few degrees above the ambient. This process, generally known as hibernation, reduces the temperature differential, metabolic activity, as well as the energy demand, and thus facilitates survival during winter. Successful hibernation in mammals requires that the enzymatic processes are regulated in such a manner that metabolic balance is maintained at both the high body temperature of the summer-active animal (37 degrees C) and the low body temperature of the winter-torpid animal (approx. 5 degrees C). This means that the cellular membranes have thermal properties capable of maintaining a balanced metabolism at these extreme physiological temperatures. The available evidence indicates that, for some tissues, preparation for hibernation involves an alteration in the lipid composition and thermal properties of cellular membranes. Marked differences in the thermal response of cellular membranes have been observed on a seasonal basis and, in some membranes, differences in lipid composition have been associated with the torpid state. However, to date, no consistent changes in lipid composition which would account for, or explain, the changes in membrane thermal response, have been detected. An important point to emphasize is that the process of 'homeoviscous adaptation', which occurs in procaryotes and some poikilotherms during acclimation to low temperatures, is not a characteristic feature of most membranes of mammalian hibernators.  相似文献   

5.
Hibernation in the tropics: lessons from a primate   总被引:7,自引:0,他引:7  
The Malagasy primate Cheirogaleus medius hibernates in tree holes for 7 months, although ambient temperatures during hibernation rise above 30°C in their natural environment. In a field study we show that during hibernation the body temperature of most lemurs fluctuates between about 10°C and 30°C, closely tracking the diurnal fluctuations of ambient temperature passively. These lemurs do not interrupt hibernation by spontaneous arousals, previously thought to be obligatory for all mammalian hibernators. However, some lemurs hibernate in large trees, which provide better thermal insulation. Their body temperature fluctuates only little around 25°C, but they show regular arousals, as known from temperate and arctic hibernators. The results from this study demonstrate that maximum body temperature is a key factor necessitating the occurrence of arousals. Furthermore, we show that hibernation is not necessarily coupled to low body temperature and, therefore, low body temperature should no longer be included in the definition of hibernation.  相似文献   

6.
In order to ascertain the thermal insulation function of fur in mice, food and water intakes and rectal and skin temperatures were observed in Jcl: ICR mice and a group of the same species with their fur clipped, as well as BALB/C nu/+ and nu/nu mice. Food and water intakes increased as the ambient temperature dropped. The rectal temperature remained almost unchanged at ambient temperatures of from 18 to 30 degrees C. Skin temperatures were highest at side of the abdomen, lower at the neck, and lowest at the head. There was a tendency for skin temperatures to increase as the ambient temperature rose. The skin temperatures of mice with fur were higher than those of mice without fur. The thermal insulation of fur was 0.25, 0.14 and -0.06 clo at 18, 22, 26 and 30 degrees C in ICR mice, and 0.36, 0.01, 0.01 and -0.03 clo at 18, 22, 26 and 30 degrees C in BALB/C mice, respectively. These results confirm that heat loss from the skin at low temperatures could be prevented by the presence of fur. It also appeared that the hairless mice mutant had a lower metabolic rate than the animals with their fur clipped.  相似文献   

7.
Body temperature of five European hamsters exposed to semi-natural environmental conditions at 47° N in Southern Germany was recorded over a 1.5-year period using intraperitoneal temperature-sensitive radio transmitters. The animals showed pronounced seasonal changes in body weight and reproductive status. Euthermic body temperature changed significantly throughout the year reaching its maximum of 37.9±0.2°C in April and its minimum of 36.1±0.4°C in December. Between November and March the hamsters showed regular bouts of hibernation and a few bouts of shallow torpor. During hibernation body temperature correlated with ambient temperature. Monthly means of body temperature during hibernation were highest in November (7.9±0.8°C) and March (8.2±0.5°C) and lowest in January (4.4±0.7°C). Using periodogram analysis methods, a clear diurnal rhythm of euthermic body temperature could be detected between March and August, whereas no such rhythm could be found during fall and winter. During hibernation bouts, no circadian rhythmicity was evident for body temperature apart from body temperature following ambient temperature with a time lag of 3–5 h. On average, hibernation bouts lasted 104.2±23.8 h with body temperature falling to 6.0±1.7°C. When entering hibernation the animals cooled at a rate of -0.8±0.2°C·h-1; when arousing from hibernation they warmed at a rate of 9.9±2.4°C·h-1. Warming rates were significantly lower in November and December than in January and February, and correlated with ambient temperature (r=-0.46, P<0.01) and hibernating body temperature (r=-0.47, P<0.01). Entry into hibrnation occured mostly in the middle of the night (mean time of day 0148 hours ±3.4 h), while spontaneous arousals were widely scattered across day and night. For all animals regression analysis revealed free-running circadian rhythms for the timing of arousal. These results suggest that entry into hibernation is either induced by environmental effects or by a circadian clock with a period of 24 h, whereas arousal from hibernation is controlled by an endogenous rhythm with a period different from 24 h.Abbreviations bw body weight - CET central European time - T a ambient temperature - T b body temperature - TTL transistor-transistor logic  相似文献   

8.
In 9 rabbits the effect of intravenous administration of E. coli pyrogen 0.5 microgram/kg on the reaction of selective brain cooling was studied at ambient temperatures of 20, 30 and 40 degrees C. In the freely moving animals the temperatures of the brain, carotid artery and nuchal muscles were measured with an accuracy down to 0.05 degree C and the temperatures of the ear pinna and nasal mucosa were measured accurate to 0.5 degree C. The respiratory rate was measured as well. It was found that the spontaneous febrile reaction without the component of passive hyperthermia failed to cause selective brain cooling, even if its temperature reached higher values than in case of brain temperature rise caused only by high ambient temperature. On the other hand, when the high ambient temperature caused thermal panting, pyrogen administration at an ambient temperature of 30 degrees C could reduce panting, while at an ambient temperature of 40 degrees C intense panting initiated prior to the appearance of the febrile reaction and was associated with the fever and outlasted it.  相似文献   

9.
Mild reductions in ambient temperature dramatically increase the mortality of neonatal mice deficient in pituitary adenylate cyclase-activating polypeptide (PACAP), with the majority of animals succumbing in the second postnatal week. During anesthesia-induced hypothermia, PACAP(-/-) mice at this age are also vulnerable to prolonged apneas and sudden death. From these observations, we hypothesized that before the onset of genotype-specific mortality and in the absence of anesthetic, the breathing of PACAP-deficient mice is more susceptible to mild reductions in ambient temperature than wild-type littermates. To test this hypothesis, we recorded breathing in one group of postnatal day 4 PACAP+/+, (+/-), and (-/-) neonates (using unrestrained, flow-through plethysmography) and metabolic rate in a separate group (using indirect calorimetry), both of which were exposed acutely to ambient temperatures slightly below (29 degrees C), slightly above (36 degrees C), or at thermoneutrality (32 degrees C). At 32 degrees C, the breathing frequency of PACAP(-/-) neonates was significantly less than PACAP+/+ littermates. Reducing the ambient temperature to 29 degrees C caused a significant suppression of tidal volume and ventilation in both PACAP+/- and (-/-) animals, while the tidal volume and ventilation of PACAP+/+ animals remained unchanged. Genotype had no effect on the ventilatory responses to ambient warming. At all three ambient temperatures, genotype had no influence on oxygen consumption or body temperature. These results suggest that during mild reductions in ambient temperature, PACAP is vital for the preservation of neonatal tidal volume and ventilation, but not for metabolic rate or body temperature.  相似文献   

10.
Torpor (i.e. the reduction of body temperature and metabolic rate for less than 24 h) and hibernation (i.e. torpor phases longer than 24 h) are among the most extreme adaptations to seasonality in primate habitats. Although widespread among mammals, this form of extreme thermoregulation is rare among primates and is reported only for species of the cheirogaleid family. Understanding their physiological ecology is crucial for many aspects of cheirogaleid socioecology like their social organization and their mating systems. This paper first provides an overview of published information on hibernation and torpor and identifies a patchy distribution for the occurrence of hibernation across genera, species and populations. Based on a review of published studies from the wild and from captivity, we then propose a possible explanation for variation in hibernation behavior among Microcebus species and populations. Accordingly, the amount of energy that can be saved during torpor early in the lean dry season, which is determined by the minimum ambient temperature will be decisive. Only where temperatures are low, early dry season torpor bouts will be long enough to save enough energy to build up fat reserves for longer bouts of hibernation. Finally, we summarize information on the causal factors for the occurrence of hibernation by analyzing sex differences within populations. Further physiological studies on other cheirogaleid species are needed to identify the phylogenetic origin of hibernation in primates.  相似文献   

11.
During hibernation at ambient temperatures (T(a)) above 0 degrees C, rodents typically maintain body temperature (T(b)) approximately 1 degrees C above T(a), reduce metabolic rate, and suspend or substantially reduce many physiological functions. We tested the extent to which the presence of an insulative pelage affects hibernation. T(b) was recorded telemetrically in golden-mantled ground squirrels (Spermophilus lateralis) housed at a T(a) of 5 degrees C; food intake and body mass were measured at regular intervals throughout the hibernation season and after the terminal arousal. Animals were subjected to complete removal of the dorsal fur or a control procedure after they had been in hibernation for 3-4 wk. Shaved squirrels continued to hibernate with little or no change in minimum T(b), bout duration, duration of periodic normothermic bouts, and food intake during normothermia. Rates of rewarming from torpor were, however, significantly slower in shaved squirrels, and rates of body mass loss were significantly higher, indicating increased depletion of white adipose energy stores. An insulative pelage evidently conserves energy over the course of the hibernation season by decreasing body heat loss and reducing energy expenditure during periodic arousals from torpor and subsequent intervals of normothermia. This prolongs the hibernation season by several weeks, thereby eliminating the debilitating consequences associated with premature emergence from hibernation.  相似文献   

12.
Body temperature and metabolic rate during natural hypothermia in endotherms   总被引:12,自引:6,他引:6  
During daily torpor and hibernation metabolic rate is reduced to a fraction of the euthermic metabolic rate. This reduction is commonly explained by temperature effects on biochemical reactions, as described by Q 10 effects or Arrhenius plots. This study shows that the degree of metabolic suppression during hypothermia can alternatively be explained by active downregulation of metabolic rate and thermoregulatory control of heat production. Heat regulation is fully adequate to predict changes in metabolic rate, and Q 10 effects are not required to explain the reduction of energy requirements during hibernation and torpor.Abbreviations BMR basal metabolic rate - BW body weight - C thermal conductance - CHL thermal conductance as derived from HL - CHP thermal conductance as derived from HP - HL heat loss - HP heat production - MR metabolic rate - RQ respiratory quotient - Ta ambient temperature - Tb body temperature  相似文献   

13.
Summary The shivering, body temperature, and metabolic response to stable and decreasing ambient temperature were measured in winter acclimatized Black-capped Chickadees,Parus atricapillus. Shivering activity, measured by duration and amplitude of bursts, increased curvilinearly from thermoneutral temperatures of 27°C down to 0°C. This parabolic shivering response may be a major component of the curvilinear response of metabolism to decreasing ambient temperature.Birds exposed to 0°C exhibited metabolism 32–45% lower than predicted for a 12-g homeotherm and body temperatures 10°C below the pre-experimental nocturnal body temperature. This hypothermia was not the result of a breakdown in thermoregulation, but was a controlled effort serving to reduce overnight energy expenditure. It is suggested that (1) hypothermia was achieved by decreased shivering by pectoral muscles during exposure to decreasing ambient temperatures, (2) the rate of body temperature decline was moderated by intermittent and reduced bursts during the cooling period, and (3) body temperature was maintained at a particular level during exposure to a stable low ambient temperature by intense bursts lasting one to three minutes.The physiology of hypothermia in chickadees is similar to torpor; however, chickadees did not arouse to a normal diurnal body temperature in the laboratory, and their hypothermia was not induced by inanition or prolonged exposure to cold, as reported for other species capable of torpor.  相似文献   

14.
When the ambient temperature is lowered to an insect's lower thermal limit, the insect enters into chill coma. Chill coma temperature and chill coma recovery can vary within species as a result of thermal acclimation, although the physiological basis of the onset of chill coma remains poorly understood. The present study investigates how the temperature of acclimation (0, 5, 10, 15 and 20 °C for 2 or 7 days) affects chill coma temperature and oxygen consumption in adult Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae). It is hypothesized that the threshold decline in metabolic rate corresponds to the entry into chill coma. Oxygen consumption (as a proxy of metabolism) is measured across the chill coma temperature threshold, and a strong decline in oxygen consumption is expected at entry into chill coma. The acclimation decreases the chill coma temperature significantly from 6.6 ± 1.1 °C in control insects to 3.1 ± 0.7 °C in those acclimated to 10 °C. The change in metabolic rate (Q10) after acclimation to temperatures ranging from 10 to 20 °C is 3.7. Despite acclimation, the metabolic rate of A. diaperinus conforms to Arrhenius kinetics, suggesting that the response of this beetle does not show metabolic compensation. The data suggest the existence of a threshold decline in metabolic rate during cooling that coincides with the temperature at which an insect goes into chill coma.  相似文献   

15.
We tested whether food availability, thermal environment and time of year affect torpor use and temperature selection in the large mouse-eared bat (Myotis myotis) in summer and winter. Food-deprived bats were torpid longer than bats offered food ad libitum. Bats placed in a gradient of low (0 degrees C-25 degrees C) ambient temperatures (T(a)) spent more time in torpor than bats in a gradient of high (7 degrees C-43 degrees C) T(a)'s. However, we did not observe seasonal variations in the use of torpor. Moreover, even when food deprived in winter, bats never entered prolonged torpor at T(a)'s characteristic of their natural hibernation. Instead, bats preferred shallow torpor at relatively high T(a), but they always maintained a difference between body and ambient temperatures of less than 2 degrees C. Calculations based on respirometric measurements of metabolic rate showed that food deprived bats spent less energy per unit of time in torpor than fed individuals, even when they entered torpor at higher T(a)'s. We conclude that T(a) likely serves as a signal of food availability and daily torpor is apparently an adaptation to unpredictable changes in food availability, such as its decrease in summer or its increase in winter. Thus, we interpret hibernation to be a second step in the evolution of heterothermy in bats, which allows survival in seasonal environments.  相似文献   

16.
Summary A dormouse found in hibernation in its winter nest on January 26 was studied continously from February 5 until May 11 by recording ambient temperature, temperatures inside the nest ball and 5 cm from it, and by recording any possible motor activity. The first emergence from hibernaculum occurred on April 3 after which the animal was active each day with the exception of April 11, 13 and 14. Activity mainly occurred during evening and night hours and lasted on average 4 hrs (2–8 hrs) per day. Outside periods of activity the winter nest was consistently used as a place of shelter and for sleep.The ambient temperature ranged from-0.5° to 21.0°C being chiefly 1°C less the nestbox temperature. The difference between the nest-box and nest temperature was also about 1°C when the animal was inactive, thus clearly indicating torpidity. Steep increases in nest temperature, amounting to 14–18°C and raising nest temperature up to 30°C, were recorded on four occasions. This is interpreted as shallow torpor, since no activity occurred on these days.The spontaneous warming up from deep hypothermia to shallow torpor lasted on average 40 min (30–70 min), while the duration of passive cooling when returning to the hypothermic condition amounted to 5 hrs. In the weeks following continuous hibernation the dormouse alternated between activity, shallow torpor, and relatively deep torpor each day. The species should be considered as a true aestivator.  相似文献   

17.
Golden spiny mice (Acomys russatus) living in the Judean desert are exposed to extended periods of food and water shortage. We investigated their thermal and metabolic response to three weeks of 50 % food reduction at ambient temperatures of 23, 27, 32 and 35 °C by long term records of metabolic rate and body temperature in the laboratory. At all ambient temperatures, A. russatus responded to starvation by a reduction of daily energy expenditure. At 32 and 35 °C, this metabolic adjustment fully compensated the reduced food availability and they maintained their energy balance at a slightly reduced body mass. At lower ambient temperatures, they could not fully compensate for the reduced food availability and kept a negative energy balance. The reduction of daily energy expenditure was largely achieved by the occurrence of daily torpor. Torpor even occurred at high ambient temperatures of 32 and 35 °C during which metabolic depression was not associated with a marked decrease of body temperature. The results show that the occurrence of daily torpor is not necessarily linked to cold exposure and the development of a pronounced hypothermia, but may even occur as depression of metabolic rate in a hot environment.  相似文献   

18.
Summary Intraspecific differences in the patterns of heterothermy were found in captive Belding's ground squirrels that hibernated undisturbed at ambient temperatures of 5°C, 10°C, and 15°C. The timing of all entrances into and arousals from hibernation was determined from records of copper-constantan thermocouples that were mounted on the floor of each animal's nest box and connected to continuously recording potentiometers. In the absence of food, large adult males terminated hibernation spontaneously in the spring. In contrast, females and small non-breeding males (yearlings) did not stop hibernating but instead they shortened their bouts of torpor in the spring so that they aroused every three or four days. This interval of frequent arousals, termed the emergence period, lastel until the squirrels became emaciated, and it was only in the 2 or 3 weeks preceeding death (starvation period) that arousal frequency once again decreased towards midwinter values (Fig. 3). These animals terminated hibernation when fed during the emergence or starvation periods, but they were able to resume torpor if that feeding lasted less than a week.Termination of hibernation and reproductive development in males were related to the size of the animals, not their age. Males two years and older which did not deposit normal quantities of fat were like yearlings in that they had open-ended hibernation seasons and showed little testicular enlargement. Likewise, juvenile males that grew to near adult size in their first summer spontaneously terminated hibernation and had well developed testes like most older individuals. In addition, both the frequency and duration of arousals in the emergence period were related, in part, to the extent of the animals' fat reserves, such that large squirrels spent more time at high body temperatures than small individuals (Figs. 5, 6). This trend was most pronounced at high ambient temperatures.These intraspecific differences in hibernation physiology are consistent with the sex and agerelated differences in the timing of emergence above ground in nature. The increase in the time spent euthermic in the spring isinterpreted as an adaptation for increasing the opportunities for environmental assessment. The intraspecific differences in the extent of this euthermia appear to be associated with differences in the balance between the energy supplies available to an animal and its need to accelerate the use of that energy (i.e., arouse) in order to achieve an early and accurately-time emergence from the hibernaculum.  相似文献   

19.
Phaeodactylum tricornutum Bohlin (Bacillariophyceae) was maintained in exponential growth under Fe‐replete and stressed conditions over a range of temperatures from 5 to 30° C. The maximum growth rate (GR) was observed at 20° C (optimal temperature) for Fe‐replete and ‐stressed cells. There was a gradual decrease in the GR decreasing temperatures below the optimum temperature; however, the growth rate dropped sharply as temperature increased above the optimum temperature. Fe‐stressed cells grew at half the growth rate of Fe‐replete cells at 20° C, whereas this difference became larger at lower temperatures. The change in metabolic activities showed a similar pattern to the change in growth rate temperature aside from their optimum temperature. Nitrate reductase activity (NRA) and respiratory electron transport system activity (ETS) per cell were maximal between 15 and 20° C, whereas cell‐specific photosynthetic rate (Pcell) was maximal at 20° C for Fe‐replete cells. These metabolic activities were influenced by Fe deficiency, which is consistent with the theoretical prediction that these activities should have an Fe dependency. The degree of influence of Fe deficiency, however, was different for the four metabolic activities studied: NRA > Pcell > ETS = GR. NRA in Fe‐stressed cells was only 10% of that in Fe‐replete cells at the same temperature. These results suggest that cells would have different Fe requirements for each metabolic pathway or that the priority of Fe supply to each metabolic reaction is related to Fe nutrition. In contrast, the order of influence of decreasing the temperature from the optimum temperature was ETS > Pcell > NRA > GR. For NRA, the observed temperature dependency could not be accounted for by the temperature dependency of the enzyme reaction rate itself that was almost constant with temperature, suggesting that production of the enzyme would be temperature dependent. For ETS, both the enzyme reactivity and the amount of enzyme accounted for the dependency. This is the first report to demonstrate the combined effects of Fe and temperature on three important metabolic activities (NRA, Pcell, and ETS) and to determine which activity is affected the most by a shortage of Fe. Cellular composition was also influenced by Fe deficiency, showing lower chl a content in the Fe‐stressed cells. Chl a per cell volume decreased by 30% as temperature decreased from 20 to 10° C under Fe‐replete conditions, but chl a decreased by 50% from Fe‐replete to Fe‐stressed conditions.  相似文献   

20.
To determine whether metabolic rate is suppressed in a temperature-independent fashion in the golden-mantled ground squirrel during steady state hibernation, we measured body temperature and metabolic rate in ground squirrels during hibernation at different T(a)'s. In addition, we attempted to determine whether heart rate, ventilation rate, and breathing patterns changed as a function of body temperature or metabolic rate. We found that metabolic rate changed with T(a) as it was raised from 5 degrees to 14 degrees C, which supports the theory that different species sustain falls in metabolic rate during hibernation in different ways. Heart rate and breathing pattern also changed with changing T(a), while breathing frequency did not. That the total breathing frequency did not correlate closely with oxygen consumption or body temperature, while the breathing pattern did, raises important questions regarding the mechanisms controlling ventilation during hibernation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号